aOCT generates quantitative, real-time measurements of upper airway size and shape with minimal invasiveness, allowing study over lengthy periods during both sleep and wakefulness. These features should make it useful for study of upper airway behavior to investigate OSA pathophysiology and aid clinical management.
SUMMARY This study compared shape, size and length of the pharyngeal airway in individuals with and without obstructive sleep apnoea (OSA) using a novel endoscopic imaging technique, anatomical optical coherence tomography (aOCT). The study population comprised a preliminary study group of 20 OSA patients and a subsequent controlled study group of 10 OSA patients and 10 body mass index (BMI)-, gender-and agematched control subjects without OSA. All subjects were scanned using aOCT while awake, supine and breathing quietly. Measurements of airway cross-sectional area (CSA) and anteroposterior (A-P) and lateral diameters were obtained from the hypo-, oro-and velopharyngeal regions. A-P : lateral diameter ratios were calculated to provide an index of regional airway shape. In all subjects, pharyngeal CSA was lowest in the velopharynx. Patients with OSA had a smaller velopharyngeal CSA than controls (maximum CSA 91 ± 40 versus 153 ± 84 mm 2 ; P < 0.05) but comparable oro-(318 ± 80 versus 279 ± 129 mm 2 ; P = 0.48) and hypopharyngeal CSA (250 ± 105 versus 303 ± 112 mm 2 ; P = 0.36). In each pharyngeal region, the long axis of the airway was oriented in the lateral diameter. Airway shape was not different between the groups. Pharyngeal airway length was similar in both groups, although the OSA group had longer uvulae than the control group (16.8 ± 6.2 versus 11.2 ± 5.2 mm; P < 0.05). This study has shown that individuals with OSA have a smaller velopharyngeal CSA than BMI-, gender-and age-matched control volunteers, but comparable shape: a laterally oriented ellipse. These findings suggest that it is an abnormality in size rather than shape that is the more important anatomical predictor of OSA.
We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.