3D data is a valuable asset the computer vision filed as it provides rich information about the full geometry of sensed objects and scenes. Recently, with the availability of both large 3D datasets and computational power, it is today possible to consider applying deep learning to learn specific tasks on 3D data such as segmentation, recognition and correspondence. Depending on the considered 3D data representation, different challenges may be foreseen in using existent deep learning architectures. In this work, we provide a comprehensive overview about various 3D data representations highlighting the difference between Euclidean and non-Euclidean ones. We also discuss how Deep Learning methods are applied on each representation, analyzing the challenges to overcome.Concepts: • General and references → Surveys and overviews; • Computing methodologies → 3D Deep Learning; 3D computer vision applications; 3D data representations;
We propose 3DBooSTeR, a novel method to recover a textured 3D body mesh from a textured partial 3D scan. With the advent of virtual and augmented reality, there is a demand for creating realistic and high-fidelity digital 3D human representations. However, 3D scanning systems can only capture the 3D human body shape up to some level of defects due to its complexity, including occlusion between body parts, varying levels of details, shape deformations and the articulated skeleton. Textured 3D mesh completion is thus important to enhance 3D acquisitions. The proposed approach decouples the shape and texture completion into two sequential tasks. The shape is recovered by an encoder-decoder network deforming a template body mesh. The texture is subsequently obtained by projecting the partial texture onto the template mesh before inpainting the corresponding texture map with a novel approach. The approach is validated on the 3DBodyTex.v2 dataset.
This paper proposes BODYFITR, a fully automatic method to fit a human body model to static 3D scans with complex poses. Automatic and reliable 3D human body fitting is necessary for many applications related to healthcare, digital ergonomics, avatar creation and security, especially in industrial contexts for large-scale product design. Existing works either make prior assumptions on the pose, require manual annotation of the data or have difficulty handling complex poses. This work addresses these limitations by providing a novel automatic fitting pipeline with carefully integrated building blocks designed for a systematic and robust approach. It is validated on the 3DBodyTex dataset, with hundreds of highquality 3D body scans, and shown to outperform prior works in static body pose and shape estimation, qualitatively and quantitatively. The method is also applied to the creation of realistic 3D avatars from the high-quality texture scans of 3DBodyTex, further demonstrating its capabilities.
In this paper, we introduce a novel method to transfer the deformation of a human body to another directly on a manifold. There exists a rich literature on transferring deformations based on Euclidean representations. However, a 3D human shape and pose live on a manifold and have a Riemannian structure. The proposed method uses the Lie Bodies manifold representation of 3D triangulated bodies. Its benefits are preserved, namely, minimum required degrees of freedom for any triangle deformation and no heuristics to constrain excessive ones. We give a closed form solution for deformation transfer directly on the Lie Bodies. The deformations have strictly positive determinants ensuring that nonphysical deformations are removed. We show examples on three datasets, and highlight differences with the Euclidean deformation transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.