With increasing environmental concerns, much effort has been spent in research regarding development of sustainable processes for production of fuels and chemical products. In this context, hydrothermal liquefaction (HTL) has gained increasing attention, as a possible route for the chemical transformation of organic raw-materials, some sort of biomass, for example, into liquid oils at temperatures usually below 400°C, under moderate to high pressures (5 - 25 MPa), usually in the presence of a suitable catalyst. In the present work the thermogravimetric (TG) behavior under inert atmosphere of pure green coconut fiber and mixtures thereof with a spinel phase (Fe2CoO4), acting as catalyst has been studied. Spinel samples have been produced at 1000°C and different calcination times (3h, 6h and 9h). Both raw and synthesized materials were characterized through different techniques, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and Infrared Absorption Spectroscopy (FTIR). According to the TG data, the catalyst produced during a calcination time of 9h showed a superior behavior regarding the lignin full thermal decomposition, which developed without fixed carbon formation. The results further suggest that the mixing process has a significant effect over the measured degradation kinetics, as it has a direct influence over the contact between catalyst and fibers. The kinetic modelling applied to the dynamic TG signal allowed a quantitative representation of the experimental data. The global process activation energy and order have proven to be respectively, 85.291 kJ / mol and 0.1227.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.