Sammlung vonMikroorganismen und Zellkulturen, Mascheroder Weg 1 b, 381 24 B raunsc hweig, Germany A rubber-degrading bacterium (strain KdZT) was isolated from fouling tyre water inside a deteriorated automobile tyre. The strain was aerobic, Grampositive, produced elementary branching hyphae which fragmented into rodkoccus-l i ke elements and showed chemotaxonomic markers which were consistent with the classification of Gordonia, i.e. meso-diaminopimelic acid, N-glycolyl muramic acid, arabinose and galactose as diagnostic sugars, a fatty acid pattern composed of unbranched saturated and monounsaturated fatty acids with a considerable amount of tuberculostearic acid, and mycolic acids comprising 58-66 carbon atoms with two principal mycolic acids C , , and C , , counting for over 60%. Results of 16s rDNA analyses as well as chemotaxonomic results, led to the conclusion that Gordonia sp. strain KdZT ( = DSM 443023 represents a new species within the genus Gordonia for which the name Gordonia polyisoprenivorans is proposed.
The effect of pretreatment of several cis-1,4-polyisoprene containing rubbers on their biodegradability was examined. Tests were carried out with six recently isolated and characterized rubber degrading bacteria belonging to the genera Gordonia (strains Kb2, Kd2 and VH2), Mycobacterium, Micromonospora and Pseudomonas. All strains were able to use natural rubber (NR) as well as NR latex gloves as sole carbon source. Extraction of NR latex gloves by organic solvents resulted in an enhancement of growth for three of the selected strains. On the other hand, growth of Gordonia sp. (strain Kb2 and Kd2), Mycobacterium fortuitum NF4 and Micromonospora aurantiaca W2b on synthetic cis-1,4-polyisoprene did only occur after removal of the antioxidants, that are usually added during manufacture to prevent aging of the materials. Detailed degradation studies performed with Gordonia sp. Kb2 revealed an enhanced mineralization of pretreated NR latex gloves and mineralization of purified natural rubber (NR), indicating the actual mineralization of cis-1,4-polyisoprene rubber constituent even after removal of non-rubber constituent that may act as co-metabolic substrate and support microbial growth. Further analysis by scanning electron microscopy (SEM) clearly demonstrated the enhanced colonization efficiency of these bacteria towards pretreated NR latex gloves. Colonization was additionally visualized by staining of overgrown NR latex gloves with Schiff's reagent, and the purple color produced in the area of degradation was an evidence for the accumulation of aldehydes containing oligomers. Further enhancement of latex gloves degradation could be achieved after successive replacement of mineral salts medium during cultivation. Thereby, a rapid disintegration of untreated NR latex gloves material was accomplished by Gordonia sp. strain VH2.
A Gram-negative bacterium, strain AL98, was isolated from foul water inside of a deteriorated car tire on a farmer's field in Münster, Germany. The strain was able to considerably disintegrate natural rubber (NR), either in the raw state as NR latex concentrate or in the vulcanized state as NR latex glove, as well as raw synthetic cis-1,4-polyisoprene (IR). Determination of carbon dioxide evolution and living cell number during batch cultivation with each of the materials as sole source of carbon, revealed mineralization of the rubber polymer during biomass increase. Surface investigation by scanning electron microscopy gave evidence for an adhesive growth behavior of the strain proceeding by colonizing the rubber surface, merging into the rubber and forming a biofilm prior to disintegration of the material. Schiff's reagent staining performed with NR latex gloves indicated production and accumulation of aldehyde groups during colonization. The solid glove substrate disappeared completely after a prolonged cultivation period as a result of continuous degradation. Taxonomic analyses of the strain, which were also based on similarity examination of the complete 16S rRNA gene, revealed classification of strain AL98 as a strain of Pseudomonas aeruginosa. This is the first report about the isolation of a Gram-negative bacterium exhibiting strong rubber decomposing properties.
Two cis‐1,4‐polyisoprene (isoprene rubber) degrading bacteria, strains VH2 and Y2K, were identified as strains of the species Gordonia polyisoprenivorans belonging to the Corynebacterineae, a suborder of the order Actinomycetales. Both showed characteristic growth and degradation of isoprene rubber as described previously for the type strain of G. polyisoprenivorans Kd2 (DSM 44302T). For strain VH2 the chemotaxonomic properties were investigated, and DNA–DNA hybridization experiments with the type strain revealed the affiliation to the species G. polyisoprenivorans. The comparison of the 16S rDNA sequences, and especially hyper variable regions of these, led to the classification of strain Y2K to the same species. At present, the species G. polyisoprenivorans comprises three different isolates which share the ability to degrade isoprene rubber potently but which were obtained from different geographic regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.