MRP14 (S100A9) is the major calciumbinding protein of neutrophils and monocytes. Targeted gene disruption reveals an essential role of this S100 protein for transendothelial migration of phagocytes. The underlying molecular mechanism comprises major alterations of cytoskeletal metabolism. MRP14, in complex with its binding partner MRP8 (S100A8), promotes polymerization of microtubules. MRP14 is specifically phosphorylated by p38 mitogen- IntroductionAlthough the initial steps of leukocyte adhesion to endothelial cells during inflammatory reactions have been well characterized in recent years, mechanisms of transmigration remain far less well understood. 1,2 During transendothelial migration leukocytes extensively remodel their cytoskeletal structures in an orchestrated interplay of intracellular signaling pathways involving activation of specific protein kinases and transient elevation of intracellular calcium concentrations. [3][4][5] Recent reports have focused on the actin filament system and its regulation by the small guanosine triphosphate (GTP)-binding proteins RhoA, Cdc42, and Rac1. Less is known about regulation of the other 2 major cytoskeletal components, intermediate filaments and microtubules (MTs). [6][7][8][9] Phagocytes are characterized by a highly dynamic turnover of MTs during transmigration, but the specific proteins that regulate these events have not yet been identified. 10,11 Reorganization of MTs is controlled by modulation of intracellular calcium levels and specific protein phosphorylation. 3,5,12,13 Elevation of intracellular calcium concentrations induces conformational changes of calciumbinding proteins allowing interaction with distinct intracellular targets. The major calcium-binding molecules expressed in neutrophils and monocytes are myeloid-related protein 8 (MRP8 [S100A8]) and MRP14 (S100A9), 2 members of the S100 protein family. 14,15 S100 proteins exhibit functions during various cellular processes such as cell cycle progression and modulation of cytoskeletal-membrane interactions. However, none of the numerous effects of S100 proteins observed in vitro has so far been convincingly confirmed in vivo. 16 Targeted disruption of the MRP8 gene resulted in a lethal phenotype not allowing further functional analysis. 17 On the other hand, MRP14 Ϫ/Ϫ mice are viable but, at the first glance, do not exhibit an obvious phenotype. 18,19 Calciuminduced complexes of MRP8 and MRP14 colocalize with intermediate filaments and MTs on activation of isolated monocytes. [20][21][22][23] Indirect evidence suggests that interaction of MRP8/MRP14 complexes with these cytoskeletal components is modulated by phosphorylation of MRP14 (phospho-MRP14) at Thr113, 23,24 but neither the specific targets within the MT system nor the molecular mechanisms of MRP8/MRP14 action have been identified.In the present study, we demonstrate that the MRP8/MRP14 complex promotes polymerization of MTs via direct interaction with tubulin. MRP14 acts as a regulatory subunit in the MRP8/ MRP14 complex and integrates input...
Abstract. Nuclear pore complexes (NPCs) prepared from Xenopus laevis oocyte nuclear envelopes were studied in "intact" form (i.e., unexposed to detergent) and after detergent treatment by a combination of conventional transmission electron microscopy (CTEM) and quantitative scanning transmission electron microscopy (STEM). In correlation-averaged CTEM pictures of negatively stained intact NPCs and of distinct NPC components (i.e., "rings" "spoke" complexes, and "plug-spoke" complexes), several fine structural features arranged with octagonal symmetry about a central axis could reproducibly be identified. STEM micrographs of unstained/freeze-dried intact NPCs as well as of their components yielded comparable but less distinct features. Mass determination by STEM revealed the following molecular masses: intact NPC with plug, 124 + 11 MD; intact NPC without plug, 112 + 11 MD; heavy ring, 32 + 5 MD; light ring, 21 ± 4 MD; plug-spoke complex, 66 ± 8 MD; and spoke complex, 52 ± 3 MD. Based on these combined CTEM and STEM data, a three-dimensional model of the NPC exhibiting eightfold centrosymmetry about an axis perpendicular to the plane of the nuclear envelope but asymmetric along this axis is proposed. This structural polarity of the NPC across the nuclear envelope is in accord with its well-documented functional polarity facilitating mediated nucleocytoplasmic exchange of molecules and particles.
The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria.
SummaryNeutral lipid accumulation is frequently observed in some Gram-negative prokaryotes like Acinetobacter sp. and most actinomycetes, including the pathogenic Mycobacterium tuberculosis and antibiotic producing streptomycetes. We examined the formation of wax ester-and triacylglycerol (TAG)-bodies in Acinetobacter calcoaceticus and Rhodococcus opacus using microscopic, immunological and biophysical methods. A general model for prokaryotic lipid-body formation is proposed, clearly differing from the current models for the formation of lipid inclusions in eukaryotes and of poly(hydroxyalkanoic acid) (PHA) inclusions in prokaryotes. Formation of lipid-bodies starts with the docking of wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) to the cytoplasm membrane. Both, analyses of in vivo and in vitro lipid-body synthesis, demonstrated the formation of small lipid droplets (SLDs), which remain bound to the membraneassociated enzyme. SLDs conglomerated subsequently to membrane-bound lipid-prebodies which are then released into the cytoplasm. The formation of matured lipid-bodies in the cytoplasm occurred by means of coalescence of SLDs inside the lipid prebodies, which are surrounded by a half-unit membrane of phospholipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.