The global effort toward sustainable development has initiated a transition in water management. Water utility companies use water-pricing policies as an instrument for controlling residential water demand. To support policy makers in their decisions, the authors have developed DAWN, a hybrid model for evaluating water-pricing policies. DAWN integrates an agent-based social model for the consumer with conventional econometric models and simulates the residential water demand-supply chain, enabling the evaluation of different scenarios for policy making. An agent community is assigned to behave as water consumers, while econometric and social models are incorporated into them for estimating water consumption. DAWN's main advantage is that it supports social interaction between consumers, through an influence diffusion mechanism, implemented via inter-agent communication. Parameters affecting water consumption and associated with consumers' social behavior can be simulated with DAWN. Real-world results of DAWN's application for the evaluation of five waterpricing policies in Thessaloniki, Greece, are presented.
The rise of Internet of Things (IoT), coupled with the advances in Artificial Intelligence technologies and cloud-based applications have caused fundamental changes in the way societies behave. Enhanced connectivity and interactions between physical and cyber worlds create ‘smart’ solutions and applications to serve society needs. Water is a vital resource and its management is a critical issue. ICT achievements gradually deployed within the water industry provide an alternative, smart and novel way to improve water management efficiently. Contributing to this direction, we propose a unified framework for urban water management, exploiting state-of-the-art IoT solutions for remote telemetry and control of water consumption in combination with machine learning-based processes. SMART-WATER platform aims to foster water utility companies by enhancing water management and decision-making processes, provide innovative solutions to consumers for smart water utilisation.
The present work aims at developing a hydraulic simulation model for the aqueducts of Thessaloniki city in Greece to model the current operating state of the network, as well as its response to emergency conditions resulting from failure in one of them. Hydraulic simulations performed using WaterGEMS software in an extended period simulation (EPS) mode entail estimating water demand in all areas of the conurbation and calibrating the model under both normal and abnormal conditions. Calibration parameters set include the pipes’ roughness coefficients and head loss characteristics of throttle control valves (TCVs). Failure in the city’s aqueducts is confronted with the development and hydraulic simulation of five emergency scenarios of network operation, two of which consider possible interconnections of the studied aqueducts. These scenarios, which include appropriately defined intermittent water supply schedules for the aqueducts, are created on the basis of fair and equitable management of water among the different areas of the city, also assuming a small number of interventions/operations during the crisis. The simulations performed reveal quite a satisfactory compliance of the system’s operation with the defined schedules, and an improved management of limited water reserves in some areas of the network when considering interconnections of the city’s aqueducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.