Electrochemical immunosensors are an emerging technology for the fast, sensitive, and reliable diagnosis of diseases from bodily fluids. These sensors work by detecting a change in current upon analyte binding to an immuno‐functionalized electrode. Current methods of electrode functionalization are lengthy processes involving self‐assembled monolayer formation and wet chemistry biofunctionalization. Herein, thin films deposited from the plasma phase of oxazoline precursors are investigated and optimized as an alternative approach for electrode functionalization. The plasma‐enabled method has the advantage of being substrate independent and allows the spontaneous binding of biomolecules in physiological buffer. Surface sensitive analysis techniques are employed to characterize the thickness, reactivity, and stability of the thin films before investigating their electrochemical properties on indium tin oxide and gold electrodes including the feasibility to reduce charge transfer resistance with gold nanoparticles. Last, these films are employed to develop an immunosensor for the detection of free epithelial cell adhesion molecule with a limit of detection of 8.7 ng mL−1.
Plasma‐polymerized polyoxazoline (POx) thin films offer a fast, scalable, and solvent‐free method of electrode functionalization through the unique chemistry of the oxazoline ring. However, for POx to be a viable green alternative to existing surface modification approaches, the films should be able to withstand the processing steps involved in biosensing. Here, the effects that current exposure, extended incubation, and repeated electrode rinses have on the electrochemical and physical stability of polymethyloxazoline thin films are investigated. The films are observed to become more diffusive after incubation and rinse steps. While no significant changes in chemistry were observed, a marked change in nanotopography occurred after exposure to current, suggesting a change in the polymer film structure.
Biomolecules readily and irreversibly bind to plasma deposited Polyoxazoline thin films in physiological conditions. The unique reactivity of these thin films toward antibodies is driving the development of immunosensing platforms for applications in cancer diagnostics. However, in order for these coatings to be used as advanced immunosensors, they need to be incorporated into microfluidic devices that are sealed via plasma bonding. In this work, the thickness, chemistry and reactivity of the polyoxazoline films were assessed following plasma activation. Films deposited from methyl and isopropenyl oxazoline precursors were integrated into spiral microfluidic devices and biofunctionalized with prostate cancer specific antibodies. Using microbeads as model particles, the design of the spiral microfluidic was optimised to enable the size-based isolation of cancer cells. The device was tested with a mixed cell suspension of healthy and malignant prostate cells. The results showed that, following size-specific separation in the spiral, selective capture was achieved on the immunofunctionalised PPOx surface. This proof of concept study demonstrates that plasma deposited polyoxazoline can be used for immunosensing in plasma bonded microfluidic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.