Many of the applications of ionic liquids rely on their bulk properties or their solvation abilities. However, it is their interactions with solid surfaces that underpin many of their potential applications in advanced technologies. Whether it is as lubricants for wind turbines or as electrolytes in supercapacitors, there are many areas where ionic liquids can provide an improvement in performance relative to more commonplace liquids. However, there are some barriers to their implementation in such applications. Foremost of these is the lack of systematic studies of their interactions with solid surfaces as well as neglecting the effect of the absorbed water on wetting. The present study explores the dynamic wetting of three ionic liquids (with a different length of hydrocarbon chain in the cation) on gold and glass substrates, both of which are relevant for nano- and micromechanical machine applications, under well-controlled environmental conditions. The form of data capture (Wilhelmy plate) allows for a direct analysis using analytical expressions for the two dominant approaches for dynamic wetting: the hydrodynamic and molecular kinetic models. All ionic liquids yield data that are described best by the molecular kinetic model. Substrate-ionic liquid and water-ionic liquid interactions contribute to the mechanisms involved in the wetting process.
The adsorption of carboxymethylcellulose (CMC), and the subsequent effect on bubble-surface interactions, has been studied for a graphite surface. CMC adsorbs on highly oriented pyrolytic graphite (HOPG) in specific patterns: when adsorbed from a solution of low concentration it forms stretched, isolated and sparsely distributed chains, while upon adsorption from a solution of higher concentration, it forms an interconnected network of multilayer features. The amount and topography of the adsorbed CMC affect the electrical properties as well as the wettability of the polymer-modified HOPG surface. Adsorption of CMC onto the HOPG surface causes the zeta potential to be more negative and the modified surface becomes more hydrophilic. This increase in both the absolute value of zeta potential and the surface hydrophilicity originates from the carboxymethyl groups of the CMC polymer. The effect of the adsorbed polymer layer on wetting film drainage and bubble-surface/particle attachment was determined using high speed video microscopy to monitor single bubble-surface collision, and single bubble Hallimond tube flotation experiments. The time of wetting film drainage and the time of three-phase contact line spreading gets significantly longer for polymer-modified HOPG surfaces, indicating that the film rupture and three-phase contact line expansion were inhibited by the presence of polymer. The effect of longer drainage times and slower dewetting correlated with reduced flotation recovery. The molecular kinetic (MK) model was used to quantify the effect of the polymer on dewetting dynamics, and showed an increase in the jump frequency for the polymer adsorbed at the higher concentration.
Plasma‐polymerized polyoxazoline (POx) thin films offer a fast, scalable, and solvent‐free method of electrode functionalization through the unique chemistry of the oxazoline ring. However, for POx to be a viable green alternative to existing surface modification approaches, the films should be able to withstand the processing steps involved in biosensing. Here, the effects that current exposure, extended incubation, and repeated electrode rinses have on the electrochemical and physical stability of polymethyloxazoline thin films are investigated. The films are observed to become more diffusive after incubation and rinse steps. While no significant changes in chemistry were observed, a marked change in nanotopography occurred after exposure to current, suggesting a change in the polymer film structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.