The annotation of transposable elements (transposons) is a very dynamic field of genomics and various tools assigned to support this bioinformatics endeavor have been developed and described. Genome ARTIST v1.19 (GA_v1.19) software was conceived for mapping artificial transposons mobilized during insertional mutagenesis projects, but the new functions of GA_v2 qualify it as a tool for the mapping and annotation of natural transposons (NTs) in long reads, contigs and assembled genomes. The tabular export of mapping and annotation data for high-throughput data analysis, the generation of a list of flanking sequences around the coordinates of insertion or around the target site duplications and the computing of a consensus sequence for the flanking sequences are all key assets of GA_v2. Additionally, we developed a set of scripts that enable the user to annotate NTs, to harness annotations offered by FlyBase for Drosophila melanogaster genome, to convert sequence files from .fasta to .raw, and to extract junction query sequences essential for NTs mapping. Herein, we present the applicability of GA_v2 for a preliminary annotation of P-element and hobo class II NTs and copia retrotransposon in the genome of D. melanogaster strain Horezu_LaPeri (Horezu), Romania, which was sequenced with Nanopore technology in our laboratory. We used contigs assembled with Flye tool and a Q10 quality filter of the reads. Our results suggest that GA_v2 is a reliable autonomous tool able to perform mapping and annotation of NTs in genomes sequenced by long sequencing technology. GA_v2 is open-source software compatible with Linux, Mac OS and Windows and is available at GitHub repository and dedicated website.
To date, different strategies of whole-genome sequencing (WGS) have been developed in order to understand the genome structure and functions. However, the analysis of genomic sequences obtained from natural populations is challenging and the biological interpretation of sequencing data remains the main issue. The MinION device developed by Oxford Nanopore Technologies (ONT) is able to generate long reads with minimal costs and time requirements. These valuable assets qualify it as a suitable method for performing WGS, especially in small laboratories. The long reads resulted using this sequencing approach can cover large structural variants and repetitive sequences commonly present in the genomes of eukaryotes. Using MinION, we performed two WGS assessments of a Romanian local strain of Drosophila melanogaster, referred to as Horezu_LaPeri (Horezu). In total, 1,317,857 reads with a size of 8.9 gigabytes (Gb) were generated. Canu and Flye de novo assembly tools were employed to obtain four distinct assemblies with both unfiltered and filtered reads, achieving maximum reference genome coverages of 94.8% (Canu) and 91.4% (Flye). In order to test the quality of these assemblies, we performed a two-step evaluation. Firstly, we considered the BUSCO scores and inquired for a supplemental set of genes using BLAST. Subsequently, we appraised the total content of natural transposons (NTs) relative to the reference genome (ISO1 strain) and mapped the mdg1 retroelement as a resolution assayer. Our results reveal that filtered data provide only slightly enhanced results when considering genes identification, but the use of unfiltered data had a consistent positive impact on the global evaluation of the NTs content. Our comparative studies also revealed differences between Flye and Canu assemblies regarding the annotation of unique versus repetitive genomic features. In our hands, Flye proved to be moderately better for gene identification, while Canu clearly outperformed Flye for NTs analysis. Data concerning the NTs content were compared to those obtained with ONT for the D. melanogaster ISO1 strain, revealing that our strategy conducted better results. Additionally, the parameters of our ONT reads and assemblies are similar to those reported for ONT experiments performed on various model organisms, revealing that our assembly data are appropriate for a proficient annotation of the Horezu genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.