Experimental and theoretical investigations of light self-trapping waveguides in a bulk polymeric medium based on polymethylmethacrylate (PMMA) with photosensitive phenanthrenequinone (PQ)-molecules are examined. Self-channeling was generated for the first time in this nonlinear bulk PQ-PMMA media with a thickness up to several millimeters and 0.1 mol. % PQ-concentration. The experimental formation of volume waveguide structures with a length of 2 - 3 cm at different laser wavelengths (405 nm, 488 nm, and 514.5 nm) was demonstrated. The calculations based on a model for the laser beam propagation in the bulk PQ-PMMA medium with competitive nonlinearities are in a good agreement with the experiments.
This paper is devoted to the investigation of the diffraction characteristics of a multilayer optical structure, represented by a two-dimensional phase lattice formed in thin-film layers of nematic polymerizable liquid crystal (PLC). In order to generate periodically ordered liquid-crystal (LC) domains with dimensions of 5–10 µm, which form an anisotropic LC grating, the layer-by-layer patterned photoalignment technology of the water-soluble azo dye AbA-2522 was used. The possibilities of spatial-polarization control of light beams by means of developed one- and two-dimensional diffractive LC structures have been studied experimentally. Our results are promising from the point of view of development and creation of LC-devices for solving current problems of polarization photonics.
The energy and spectral conditions for single-stage holographic recording of a diffraction optical element based on the carbazole-containing azo polymer, that forms singular light beams (optical vortices), have been established. With the atomic-force microscopy (AFM), the surface morphology of the recorded relief holograms was studying, and their diffraction efficiency has been estimated. The topology of the generated optical phase singularities has been studied and the stability range of an optical vortex having the topological charge l = 2 has been found. The possibility of using the developed diffractive optical element in the scheme of optical tweezers for manipulating micro-objects is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.