The goal of the strategy of the Russian Federation in the development of the Far Eastern’s and Arctic seas is an active, qualitatively new industrial, infrastructural and social development of the North and the East. The Arctic shelf of Russia have the main reserve of oil and gas resources, which belongs to the number of unique areas of the world, in terms of hydrocarbon reserves. The objectives of the policy of mining enterprises aimed at increasing the reserves of offshore fields, introducing the latest equipment and technologies in their development, creating an infrastructure that can ensure the smooth and trouble-free operation of mining complexes and the transportation of products. It is necessary to create a digital platform for ensuring safe operation on the shelf, accumulating data from satellite surveys of transport infrastructure facilities, for monitoring the hydrometeorological, ice and navigation conditions in the waters of the Far Eastern Seas and the Northern Sea Route (NSR) for navigation and hydrographic support of ship traffic, as well as icebreaker assistances. The system should support the laying of ship navigation routes of transport vessels and icebreaking fleets, taking into account the navigation and ice conditions in the specified water area, the organization of search and rescue operations, elimination of the consequences of emergency spills, pollution from ships with harmful substances or garbage.
Research was carried out improve efficiency of thematic mapping based on the recognition of plant communities in the subzone of dark coniferous forests for South of Sakhalin on multi-time satellite images of average resolution Landsat 8. We used reference samples of sites where geobotanical studies were conducted, for improve the quality of recognition during automated decryption. Experiments were conducted decode vegetation on singlechannel, synthesized multi-zone images obtained in different seasons of year. Spectral characteristics allow us identify plant communities in images based on morphological and physiological properties of various plants, which were quantified by reflection of vegetation in the spring image, and an integral indicator of photosynthetic activity of vegetation, which was evaluated by NDVI index calculated from spring and autumn images. Conceptual and methodological aspects of direct expert interpretation of vegetation from Landsat images by classification methods using ESRI ArcGIS raster algebra tools are considered. On example of study of vegetation communities of subzone of dark-coniferous forests of the South of Sakhalin with sufficient level of reliability, dark-coniferous forests, stone birch forest, cedar elfin formation, valley forests, thickets of Kuril bamboo, as well as residential zones, agricultural lands, areas devoid of vegetation as result of gravitational slope processes, wetlands, windfalls and man-made wasteland were identified. Decoding of vegetation cover from Landsat images showed that use of seasonal time series can significantly increase the reliability of the interpretation of most species of plant communities for the South of island. The research area is characterized by significant difference in altitude from 0 to 1100 m, as a result presence of high-altitude zone in the vegetation cover, which must be taken into account when decoding. Mapping is completed by performing automatic vectorization of raster layers and further generalization of vector polygons in accordance with selected map scale.
The territory of the Kuril Islands is a chain of volcanic structures and is subject, to certain extent, to volcanic hazards. Atlasova Island is composed of products of the Alaid volcano, which is characterized by effusive and explosive activity. The article analyzes the changes in ecosystems on Atlasov island, which are periodically caused by the Alaid volcano eruption. Large amount of pyroclastic material are brought to the surface during explosive eruptions: blocks, bombs, tephra, lapilli and volcanic ash, which is transported in the atmosphere over very long distances. Ecosystems are affected by pyroclastic deposition over a large area of island land. The purpose of this study was to identify the nature and extent of changes in the state of ecosystems affected by volcanic eruptions from multi-zone satellite images of medium resolution. Analysis of data obtained from space systems Landsat and Sentinel for the period 1972 to 2020, in GIS environment allowed us to trace the dynamics and character of the successions to the affected areas on the calculated values of the vegetation index NDVI. Techniques developed in the process of studying this issue can further facili-tate rapid assessment of impacts on ecosystems at the effusive-explosive eruptions and forecast volcanic hazard for surrounding areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.