A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The proton beam energy can be varied within a range of 0.6–2.3 MeV, keeping a high-energy stability of 0.1%. The beam current can also be varied in a wide range (from 0.3 mA to 10 mA) with high current stability (0.4%). In the device, neutron flux is generated as a result of the 7Li(p,n)7Be threshold reaction. A beam-shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. A lot of scientific research has been carried out at the facility, including the study of blistering and its effect on the neutron yield. The BNCT technique is being tested in in vitro and in vivo studies, and the methods of dosimetry are being developed. It is planned to certify the neutron source next year and conduct clinical trials on it. The neutron source served as a prototype for a facility created for a clinic in Xiamen (China).
Boron neutron capture therapy (BNCT) is an anticancer modality realized through 10B accumulation in tumor cells, neutron irradiation of the tumor, and decay of boron atoms with the release of alpha-particles and lithium nuclei that damage tumor cell DNA. As high-LET particle release takes place inside tumor cells absorbed dose calculations are difficult, since no essential extracellular energy is emitted. We placed gold nanoparticles inside tumor cells saturated with boron to more accurately measure the absorbed dose. T98G cells accumulated ~50 nm gold nanoparticles (AuNPs, 50 µg gold/mL) and boron-phenylalanine (BPA, 10, 20, 40 µg boron-10/mL), and were irradiated with a neutron flux of 3 × 108 cm−2s−1. Gamma-rays (411 keV) emitted by AuNPs in the cells were measured by a spectrometer and the absorbed dose was calculated using the formula D = (k × N × n)/m, where D was the absorbed dose (GyE), k—depth-related irradiation coefficient, N—number of activated gold atoms, n—boron concentration (ppm), and m—the mass of gold (g). Cell survival curves were fit to the linear-quadratic (LQ) model. We found no influence from the presence of the AuNPs on BNCT efficiency. Our approach will lead to further development of combined boron and high-Z element-containing compounds, and to further adaptation of isotope scanning for BNCT dosimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.