The small heat shock proteins (sHsps) from human (Hsp27) and mouse (Hsp25) form large oligomers which can act as molecular chaperones in vitro and protect cells from heat shock and oxidative stress when overexpressed. In addition, mammalian sHsps are rapidly phosphorylated by MAPKAP kinase 2/3 at two or three serine residues in response to various extracellular stresses. Here we analyze the effect of sHsp phosphorylation on its quaternary structure, chaperone function, and protection against oxidative stress. We show that in vitro phosphorylation of recombinant sHsp as well as molecular mimicry of Hsp27 phosphorylation lead to a significant decrease of the oligomeric size. We demonstrate that both phosphorylated sHsps and the triple mutant Hsp27-S15D,S78D,S82D show significantly decreased abilities to act as molecular chaperones suppressing thermal denaturation and facilitating refolding of citrate synthase in vitro. In parallel, Hsp27 and its mutants were analyzed for their ability to confer resistance against oxidative stress when overexpressed in L929 and 13.S.1.24 cells. While wild type Hsp27 confers resistance, the triple mutant S15D,S78D,S82D cannot protect against oxidative stress effectively. These data indicate that large oligomers of sHsps are necessary for chaperone action and resistance against oxidative stress whereas phosphorylation down-regulates these activities by dissociation of sHsp complexes to tetramers. Small heat shock proteins (sHsps)1 are constitutively expressed in virtually all organisms and exhibit a monomeric molecular mass of 15-42 kDa (for a recent review see Ref. 1). Within the cell they can form oligomeric complexes of up to 1 MDa (2). Overexpression of different mammalian sHsps increases cellular thermoresistance to a significant degree (3, 4). sHsps can, furthermore, function in different, seemingly unrelated processes like RNA stabilization (5), interaction with the cytoskeleton (6, 7), or apoptosis (8, 9). In vitro sHsps act as molecular chaperones preventing unfolded proteins from irreversible aggregation (10 -12) and, in cooperation with other factors, e.g. Hsp70 and ATP, facilitating productive refolding of unfolded proteins (13,14).In mammalian cells certain sHsps, e.g. mouse Hsp25 or human Hsp27, form a converging element of the cellular stress response since they show both a stress-induced increase in expression and phosphorylation. Under heat shock conditions increased phosphorylation can be detected after several minutes while changes in expression are detected after several hours (15). The rapid stress-induced phosphorylation is the result of stimulation of the p38 MAP kinase cascade and subsequent activation of MAPKAP kinases 2 and 3 which directly phosphorylate mammalian sHsps (16, 17) at several distinct sites (18,19). Since sHsp phosphorylation and stress-induced expression show different kinetics, it is assumed that phosphorylation of the pre-existing constitutively expressed sHsps is a first phase of the stress response while the elevated expression at a time w...
MAPKAP kinase 2 (MK2) is one of several kinases that are regulated through direct phosphorylation by p38 MAP kinase. By introducing a targeted mutation into the mouse MK2 gene, we have determined the physiological function of MK2 in vivo. Mice that lack MK2 show increased stress resistance and survive LPS-induced endotoxic shock. This is due to a reduction of approximately 90% in the production of tumor necrosis factor-alpha (TNF-alpha) and not to a change in signalling from the TNF receptor. The level and stability of TNF-alpha mRNA is not reduced and TNF-alpha secretion is not affected. We conclude that MK2 is an essential component in the inflammatory response which regulates biosynthesis of TNF-alpha at a post-transcriptional level.
The mitogen-activated protein kinase (MAPK) p38/MAPK-activated protein kinase 2 (MK2) signaling pathway plays an important role in the posttranscriptional regulation of tumor necrosis factor (TNF), which is dependent on the adenine/uridine-rich element (ARE) in the 3 untranslated region of TNF mRNA. After lipopolysaccharide (LPS) stimulation, MK2-deficient macrophages show a 90% reduction in TNF production compared to the wild type. Tristetraprolin (TTP), a protein induced by LPS, binds ARE and destabilizes TNF mRNA. Accordingly, macrophages lacking TTP produce large amounts of TNF. Here, we generated MK2/TTP double knockout mice and show that, after LPS stimulation, bone marrow-derived macrophages produce TNF mRNA and protein levels comparable to those of TTP knockout cells, indicating that in the regulation of TNF biosynthesis TTP is genetically downstream of MK2. In addition, we show that MK2 is essential for the stabilization of TTP mRNA, and phosphorylation by MK2 leads to increased TTP protein stability but reduced ARE affinity. These data suggest that MK2 inhibits the mRNA destabilizing activity of TTP and, in parallel, codegradation of TTP together, with the target mRNA resulting in increased cellular levels of TTP.
We demonstrate that lipopolysaccharide-induced tumor necrosis factor (TNF) biosynthesis becomes independent of MAPKAP kinase 2 (MK2) when the AU-rich element (ARE) of the TNF gene is deleted. In spleen cells and macrophages where TNF biosynthesis is restored as a result of this deletion, interleukin (IL)-6 biosynthesis is still dependent on MK2. In MK2-deficient macrophages the half-life of IL-6 mRNA is reduced more than 10-fold, whereas the half-life of TNF mRNA is only weakly decreased. It is shown that the stability of a reporter mRNA carrying the AU-rich 3-untranslated region (3-UTR) of IL-6 is increased by MK2. The data provide in vivo evidence that the AU-rich 3-UTRs of TNF and IL-6 are downstream to MK2 signaling and make MK2 an essential component of mechanisms that regulate biosynthesis of IL-6 at the levels of mRNA stability, and of TNF mainly through TNF-ARE-dependent translational control.
MK2 and MK3 represent protein kinases downstream of p38 mitogen-activated protein kinase (MAPK).Deletion of the MK2 gene in mice resulted in an impaired inflammatory response although MK3, which displays extensive structural similarities and identical functional properties in vitro, is still present. Here, we analyze tumor necrosis factor (TNF) production and expression of p38 MAPK and tristetraprolin (TTP) in MK3-deficient mice and demonstrate that there are no significant differences with wild-type animals. We show that in vivo MK2 and MK3 are expressed and activated in parallel. However, the level of activity of MK2 is always significantly higher than that of MK3. Accordingly, we hypothesized that MK3 could have significant effects only in an MK2-free background and generated MK2/MK3 double-knockout mice. Unexpectedly, these mice are viable and show no obvious defects due to loss of compensation between MK2 and MK3. However, there is a further reduction of TNF production and expression of p38 and TTP in double-knockout mice compared to MK2-deficient mice. This finding, together with the observation that ectopically expressed MK3 can rescue MK2 deficiency similarly to MK2, indicates that both kinases share the same physiological function in vivo but are expressed to different levels.Downstream of mitogen-activated protein kinases (MAPKs) different groups of MAPK-activated protein kinases (MAP KAPKs) have been defined (reviewed in reference 28). These enzymes transduce signals to target proteins that are not direct substrates of the MAPKs and, therefore, serve to relay phosphorylation-dependent signaling within MAPK cascades to diverse cellular functions. One of these groups is formed by the three MAPKAPKs, MK2, MK3 (also known as 3pK), and MK5 (also designated PRAK) (reviewed in reference 12). While MK5 is mainly activated by the atypical MAPK ERK3 (29, 30), the remaining two kinases, MK2 and MK3, are directly downstream of the MAPK p38␣/ (7,10,24,27,31). Phosphorylation of MK2 and MK3 by p38␣/ at two or three major regulatory sites leads to activation and coupled nuclear export of both enzymes, which are localized in the nucleus of resting cells (4,8,26,36,41).A wide variety of substrates has been described for MK2 including proteins interacting with the cytoskeleton, such as small heat shock protein Hsp25 (33); mRNA-binding proteins, such as tristetraprolin (TTP) (6, 32); transcription factors, such as heat shock factor 1 (38); and regulators of the cell cycle and apoptosis, such as Cdc25B/C (23). The phosphorylation site recognition motifs of MK2 and MK3 are similar (20) or even identical (7). Despite the similar recognition motif, not all MK2 substrates have been described as MK3 substrates so far, probably because in most cells MK2 activity dominates and makes analysis of the minor MK3 activity dependent on antibodies which discriminate between both enzymes (7).MK2-deficient mice are more resistant than wild type to endotoxic shock due to impaired production of cytokines such as tumor necrosis factor (T...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.