MAPKAP kinase 2 (MK2) is one of several kinases that are regulated through direct phosphorylation by p38 MAP kinase. By introducing a targeted mutation into the mouse MK2 gene, we have determined the physiological function of MK2 in vivo. Mice that lack MK2 show increased stress resistance and survive LPS-induced endotoxic shock. This is due to a reduction of approximately 90% in the production of tumor necrosis factor-alpha (TNF-alpha) and not to a change in signalling from the TNF receptor. The level and stability of TNF-alpha mRNA is not reduced and TNF-alpha secretion is not affected. We conclude that MK2 is an essential component in the inflammatory response which regulates biosynthesis of TNF-alpha at a post-transcriptional level.
We investigated sex differences and the role of estrogen receptor-beta (ERbeta) on myocardial hypertrophy in a mouse model of pressure overload. We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERbeta knockout (ERbeta(-/-)) mice. All mice were characterized by echocardiography and hemodynamic measurements and were killed 9 wk after surgery. Left ventricular (LV) samples were analyzed by microarray profiling, real-time RT-PCR, and histology. After 9 wk, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. ERbeta deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that WT male hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than WT female hearts. ERbeta(-/-) mice exhibited a different transcriptional response. ERbeta(-/-)/TAC mice of both sexes exhibited induction of proapoptotic genes with a stronger expression in ERbeta(-/-) males. Cardiac fibrosis was more pronounced in male WT/TAC than in female mice. This difference was abolished in ERbeta(-/-) mice. The number of apoptotic nuclei was increased in both sexes of ERbeta(-/-)/TAC mice, most prominent in males. Female sex offers protection against ventricular chamber dilation in the TAC model. Both female sex and ERbeta attenuate the development of fibrosis and apoptosis, thus slowing the progression to heart failure.
Background-In patients with aortic stenosis, pressure overload induces cardiac hypertrophy and fibrosis. Female sex and estrogens influence cardiac remodeling and fibrosis in animal models and in men. Sex differences and their molecular mechanisms in hypertrophy regression after aortic valve replacement have not yet been studied. Methods and Results-We prospectively obtained preoperative and early postoperative echocardiography in 92 patients, 53 women and 39 men, undergoing aortic valve replacement for isolated aortic stenosis. We analyzed in a subgroup of 10 patients matrix gene expression in left ventricular (LV) biopsies. In addition, we determined the effect of 17-estradiol on collagen synthesis in isolated rat cardiac fibroblasts. Preoperatively, women and men had similar ejection fraction. Similar percentages of women and men had increased LV diameters (37% and 38%). Women more frequently exhibited LV hypertrophy than men (women: 86%; men: 56%; PϽ0.01). Postoperatively, increased LV diameters persisted in 34% of men but only in 12% of women (PϽ0.023). LV hypertrophy reversed more frequently in women than in men, leading to a similar prevalence of LV hypertrophy after surgery (women: 45%; men: 36%). In surgical biopsies, men had significantly higher collagen I and III and matrix metalloproteinase 2 gene expression than women. In isolated rat cardiac fibroblasts, 17-estradiol significantly increased collagen I and III gene expressions in male cells but decreased it in female cells. Conclusion-Women
Pressure overload (PO) first causes cardiac hypertrophy and then heart failure (HF), which are associated with sex differences in cardiac morphology and function. We aimed to identify genes that may cause HF-related sex differences. We used a transverse aortic constriction (TAC) mouse model leading to hypertrophy without sex differences in cardiac function after 2 weeks, but with sex differences in hypertrophy 6 and 9 weeks after TAC. Cardiac gene expression was analyzed 2 weeks after surgery. Deregulated genes were classified into functional gene ontology (GO) categories and used for pathway analysis. Classical marker genes of hypertrophy were similarly upregulated in both sexes (α-actin, ANP, BNP, CTGF). Thirty-five genes controlling mitochondrial function (PGC-1, cytochrome oxidase, carnitine palmitoyl transferase, acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase) had lower expression in males compared to females after TAC. Genes encoding ribosomal proteins and genes associated with extracellular matrix remodeling exhibited relative higher expression in males (collagen 3, matrix metalloproteinase 2, TIMP2, and TGFβ2, all about twofold) after TAC. We confirmed 87% of the gene expression by real-time polymerase chain reaction. By GO classification, female-specific genes were related to mitochondria and metabolism and males to matrix and biosynthesis. Promoter studies confirmed the upregulation of PGC-1 by E2. Less downregulation of metabolic genes in female hearts and increased protein synthesis capacity and deregulation of matrix remodeling in male hearts characterize the sex-specific early response to PO. These differences could contribute to subsequent sex differences in cardiac function and HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.