Several types of terminally differentiated somatic cells can be reprogrammed into a pluripotent state by ectopic expression of Klf4, Oct3/4, Sox2, and c-Myc. Such induced pluripotent stem (iPS) cells have great potential to serve as an autologous source of cells for tissue repair. In the process of developing iPS-cell-based therapies, the major goal is to determine whether differentiated cells derived from iPS cells, such as cardiomyocytes (CMs), have the same functional properties as their physiological in vivo counterparts. Therefore, we differentiated murine iPS cells to CMs in vitro and characterized them by RT-PCR, immunocytochemistry, and electrophysiology. As key markers of cardiac lineages, transcripts for Nkx2.5, alphaMHC, Mlc2v, and cTnT could be identified. Immunocytochemical stainings revealed the presence of organized sarcomeric actinin but the absence of mature atrial natriuretic factor. We examined characteristics and developmental changes of action potentials, as well as functional hormonal regulation and sensitivity to channel blockers. In addition, we determined expression patterns and functionality of cardiac-specific voltage-gated Na+, Ca2+, and K+ channels at early and late differentiation stages and compared them with CMs derived from murine embryonic stem cells (ESCs) as well as with fetal CMs. We conclude that iPS cells give rise to functional CMs in vitro, with established hormonal regulation pathways and functionally expressed cardiac ion channels; CMs generated from iPS cells have a ventricular phenotype; and cardiac development of iPS cells is delayed compared with maturation of native fetal CMs and of ESC-derived CMs. This difference may reflect the incomplete reprogramming of iPS cells and should be critically considered in further studies to clarify the suitability of the iPS model for regenerative medicine of heart disorders.
Stem cell derived cardiomyocytes generated either from human embryonic stem cells (hESC-CMs) or human induced pluripotent stem cells (hiPSC-CMs) hold great promise for the investigation of early developmental processes in human cardiomyogenesis and future cell replacement strategies. We have analyzed electrophysiological properties of hESC-CMs (HES2) and hiPSC-CMs, derived from reprogrammed adult foreskin fibroblasts that have previously been found to be highly similar in terms of gene expression. In contrast to the similarity found in the expression profile we found substantial differences in action potentials (APs) and sodium currents at late stage (day 60) of in vitro differentiation with higher sodium currents in hiPSC-CMs. Sensitivity to lidocain was considerably reduced in hESC-CMs as compared to hiPSC-CMs, and the effect could not be explained by differences in beating frequency. In contrast, sensitivity to tetrodotoxin (TTX) was higher in hESC-CMs suggesting different contributions of TTX-sensitive and TTX-resistant sodium channels to AP generation. These data point to physiological differences that are not necessarily detected by genomics. We conclude that novel pharmacological screening-assays using hiPSC-CMs need to be applied with some caution.
The bacterial sodium channel, NaChBac, from Bacillus halodurans provides an excellent model to study structure–function relationships of voltage-gated ion channels. It can be expressed in mammalian cells for functional studies as well as in bacterial cultures as starting material for protein purification for fine biochemical and biophysical studies. Macroscopic functional properties of NaChBac have been described previously (Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. 2001. Science. 294:2372–2375). In this study, we report gating current properties of NaChBac expressed in COS-1 cells. Upon depolarization of the membrane, gating currents appeared as upward inflections preceding the ionic currents. Gating currents were detectable at −90 mV while holding at −150 mV. Charge–voltage (Q–V) curves showed sigmoidal dependence on voltage with gating charge saturating at −10 mV. Charge movement was shifted by −22 mV relative to the conductance–voltage curve, indicating the presence of more than one closed state. Consistent with this was the Cole-Moore shift of 533 μs observed for a change in preconditioning voltage from −160 to −80 mV. The total gating charge was estimated to be 16 elementary charges per channel. Charge immobilization caused by prolonged depolarization was also observed; Q–V curves were shifted by approximately −60 mV to hyperpolarized potentials when cells were held at 0 mV. The kinetic properties of NaChBac were simulated by simultaneous fit of sodium currents at various voltages to a sequential kinetic model. Gating current kinetics predicted from ionic current experiments resembled the experimental data, indicating that gating currents are coupled to activation of NaChBac and confirming the assertion that this channel undergoes several transitions between closed states before channel opening. The results indicate that NaChBac has several closed states with voltage-dependent transitions between them realized by translocation of gating charge that causes activation of the channel.
Hypokalaemic periodic paralysis (hypoPP) is a dominantly inherited muscle disorder characterized by episodes of flaccid weakness. Previous genetic studies revealed mutations in the voltage-gated calcium channel alpha1-subunit (CACNA1S gene) in families with hypoPP (type I). Electrophysiological studies on these mutants in different expression systems could not explain the pathophysiology of the disease. In addition, several mutations (Arg669His, Arg672His, Arg672Gly and Arg672Ser) in the voltage sensor of the skeletal muscle sodium channel alpha-subunit (SCN4A gene) have been found in families with hypoPP (type II). For Arg672Gly/His a fast inactivation defect was described, and for Arg669His an impairment of slow inactivation was reported. Except for the substitution for serine, we have now expressed all mutants in a human cell-line and studied them electrophysiologically. Patch-clamp recordings show an enhanced fast inactivation for all three mutations, whereas two of them reveal enhanced slow inactivation. This may reduce the number of functional sodium channels at resting membrane potential and contribute to the long-lasting periods of paralysis experienced by hypoPP patients. The gating of both histidine mutants (Arg669His, Arg672His) can be modulated by changes of extra- or intracellular pH. The inactivation defects of Arg669His and Arg672His can be alleviated by low pH to a significant degree, suggesting that the decrease of pH in muscle cells (e.g. during muscle work) might lead to an auto-compensation of functional defects. This may explain a delay or prevention of paralytic attacks in patients by slight physical activity. Moreover, the histidine residues may be the target for a potential therapeutic action by acetazolamide.
Hypokalemic periodic paralysis type 1 (HypoPP-1) is a hereditary muscular disorder caused by point mutations in the gene encoding the voltage-gated Ca(2+) channel alpha subunit (Ca(v)1.1). Despite extensive research, the results on HypoPP-1 mutations are minor and controversial, as it is difficult to analyse Ca(2+) channel activation macroscopically due to an existence of two open states. In this study, we heterologously expressed the wild-type and HypoPP-1 mutations introduced into the rabbit cardiac Ca(2+) channel (R650H, R1362H, R1362G) in HEK-293 cells. To examine the cooperative effects of the mutations on channel gating, we expressed two double mutants (R650H/R1362H, R650H/R1362G). We performed whole-cell patch-clamp and, to obtain more information, applied a global fitting procedure whereby several current traces elicited by different potentials were simultaneously fit to the kinetic model containing four closed, two open and two inactivated states. We found that all HypoPP-1 mutations have "loss-of-function" features: D4/S4 mutations shift the equilibrium to the closed states, which results in reduced open probability, shorter openings and, therefore, in smaller currents, and the D2/S4 mutant slows the activation. In addition, HypoPP-1 histidine mutants favored the second open state O(2) with a possibly lower channel selectivity. Cooperativity between the D2/S4 and D4/S4 HypoPP-1 mutations manifested in dominant effects of the D4/S4 mutations on kinetics of the double mutants, suggesting different roles of D2/S4 and D4/S4 voltage sensors in the gating of voltage-gated calcium channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.