Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.
Background-The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease-and human patientspecific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line.
S100A1, a Ca 2؉ binding protein of the EF-hand type, is preferentially expressed in myocardial tissue and has been found to colocalize with the sarcoplasmic reticulum (SR) and the contractile filaments in cardiac tissue. Because S100A1 is known to modulate SR Ca 2؉ handling in skeletal muscle, we sought to investigate the specific role of S100A1 in the regulation of myocardial contractility. To address this issue, we investigated contractile properties of adult cardiomyocytes as well as of engineered heart tissue after S100A1 adenoviral gene transfer. S100A1 gene transfer resulted in a significant increase of unloaded shortening and isometric contraction in isolated cardiomyocytes and engineered heart tissues, respectively. Analysis of intracellular Ca 2؉ cycling in S100A1-overexpressing cardiomyocytes revealed a significant increase in cytosolic Ca 2؉ transients, whereas in functional studies on saponinpermeabilized adult cardiomyocytes, the addition of S100A1 protein significantly enhanced SR Ca 2؉ uptake. Moreover, in Triton-skinned ventricular trabeculae, S100A1 protein significantly decreased myofibrillar Ca 2؉ sensitivity ([EC50%]) and Ca 2؉ cooperativity, whereas maximal isometric force remained unchanged. Our data suggest that S100A1 effects are cAMP independent because cellular cAMP levels and protein kinase A-dependent phosphorylation of phospholamban were not altered, and carbachol failed to suppress S100A1 actions. These results show that S100A1 overexpression enhances cardiac contractile performance and establish the concept of S100A1 as a regulator of myocardial contractility. S100A1 thus improves cardiac contractile performance both by regulating SR Ca 2؉ handling and myofibrillar Ca 2؉ responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.