Background:Plasma is an ionised gas that is typically generated in high-temperature laboratory conditions. However, recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature.Methods:Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells.Results:We show that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells; and (b) significantly reduces tumour size in vivo. It is shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated.Conclusion:The development of cold plasma tumour ablation has the potential of shifting the current paradigm of cancer treatment and enabling the transformation of cancer treatment technologies by utilisation of another state of matter.
Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m−3. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.
The interaction of the cold atmospheric plasma jet with fibroblast cells was studied. Plasma jet was initiated in the helium flow blowing through the syringe by application of high ac voltage to the discharge electrodes. The plasma jet had a length of 5cm and a diameter of 1.5–2mm in ambient air. Treatment of cells with plasma jet resulted in decreasing of cell migration rate, cell detachment, and appearance of “frozen” cells, while treatment with helium flow (no plasma) resulted in appearance of frozen cells only. A variety of cellular responses was explained by different intensities of treatment.
A new method for temporally resolved measurements of absolute values of plasma density applicable for wide spectrum of small-size atmospheric plasmas and utilizing Rayleigh microwave scattering on the tested plasma object is proposed. The absolute electron density measurements in an atmospheric plasma jet revealed presence of two consecutive breakdowns during the half-wave of the discharge-driven high voltage. The ionization mechanisms of both breakdowns are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.