Selective extraction principles for the recognition of nonelectroactive polyions such as heparin and protamine exist, but the high ionic valency renders the extraction process irreversible. A response principle for the reversible detection of such polyions is proposed here. The extraction of the polyionic analyte to the membrane and its subsequent back-extraction is now controlled electrochemically. The principle is established with a protamine electrode, and excellent stability and reproducibility are demonstrated. This method has important implications for the design of chemical recognition principles for polyionic analytes.
This paper describes a pulsed galvanostatic technique to interrogate ion-selective electrodes (ISEs) with no intrinsic ion-exchange properties. Each applied current pulse is followed by a longer baseline potential pulse to regenerate the phase boundary region of the ion-selective membrane. The applied current fully controls the magnitude and sign of the ion flux into the membrane, thus offering instrumental control over an effect that has become very important in ion-selective electrode research in recent years. The resulting chronopotentiometric response curves essentially mimic traditional ISE behavior, with apparently Nernstian response slopes and selectivities that can be described with the Nicolsky equation. Additionally, the magnitude and sign of the current pulse may be used to tune sensor selectivity. Perhaps most important, however, appears to be the finding that the extent of concentration polarization near the membrane surface can be accurately controlled by this technique. A growing number of potentiometric techniques are starting to make use of nonequilibrium principles, and the method introduced here may prove to be very useful to advance these areas of research. The basic characteristics of this pulsed galvanostatic technique are here evaluated with plasticized poly(vinyl chloride) membranes containing the sodium-selective ionophore tert-butyl calix[4]arene tetramethyl ester and a lipophilic inert salt.
We describe here in detail the first reversible electrochemical sensors for the polyion protamine. Potentiometric sensors were proposed in recent years, mainly for the determination of the polyions heparin and protamine. Such potentiometric polyion sensors functioned on the nonequilibrium extraction of polyions into a hydrophobic membrane phase via ion pairing with lipophilic ion exchangers. This made it difficult to design sensors that operate in a truly reversible fashion. The reversible sensors described here utilize the same basic response mechanism as their potentiometric counterparts, but the processes of extraction and ion stripping are now fully controlled electrochemically. Spontaneous polyion extraction is avoided by using membranes containing highly lipophilic electrolytes that possess no ion-exchange properties. Reversible extraction of polyions is induced if a constant current pulse of fixed duration is applied across the membrane, followed by a baseline potential pulse. The key theoretical response principles of this new class of polyion sensors are discussed here and compared to those of its classical potentiometric counterpart. The electrochemical sensing system is characterized in terms of optimal working conditions, membrane composition, selectivity, and influence of sample stirring and organic-phase diffusion coefficient on the response characteristics. Excellent potential stability and reversibility of the sensors are observed, and measurements of heparin concentration in whole blood samples via protamine titration are demonstrated.
Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.
Coulometry belongs to one of the few known calibration-free techniques and is therefore highly attractive for chemical analysis. Titrations performed by the coulometric generation of reactants is a well-known approach in electrochemistry, but suffers from limited selectivity and is therefore not generally suited for samples of varying or unknown composition. Here, the selective coulometric release of ionic reagents from ion-selective polymeric membrane materials ordinarily used for the fabrication of ion-selective electrodes is described. The selectivity of such membranes can be tuned to a significant extent by the type and concentration of ionophore and lipophilic ion-exchanger and is today well understood. An anodic current of fixed magnitude and duration may be imposed across such a membrane to release a defined quantity of ions with high selectivity and precision. Since the applied current relates to a defined ion flux, a variety of non-redox active ions may be accurately released with this technique. In this work, the released titrant's activity was measured with a second ionophore-based ion-selective electrode and corresponded well with expected dosage levels on the basis of Faraday's law of electrolysis. Initial examples of coulometric titrations explored here include the release of calcium ions for complexometric titrations, including back titrations, and the release of barium ions to determine sulfate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.