Abstract. Two metrics g andḡ are geodesically equivalent if they share the same (unparameterized) geodesics. We introduce two constructions that allow one to reduce many natural problems related to geodesically equivalent metrics, such as the classification of local normal forms and the Lie problem (the description of projective vector fields), to the case when the (1, 1)−tensor G i j := g ikḡ kj has one real eigenvalue, or two complex conjugate eigenvalues, and give first applications. As a part of the proof of the main result, we generalise the Topalov-Sinjukov (hierarchy) Theorem for pseudo-Riemannian metrics.
Homogeneous spaces of all compact Lie groups admit Riemannian metrics with completely integrable geodesic flows by means of C ∞ -smooth integrals [9,10]. The purpose of this paper is to give some constructions of complete involutive algebras of analytic functions, polynomial in velocities, on the (co)tangent bundles of homogeneous spaces of compact Lie groups. This allows us to obtain new integrable Riemannian and sub-Riemannian geodesic flows on various homogeneous spaces, such as Stiefel manifolds, flag manifolds and orbits of the adjoint actions of compact Lie groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.