The generation of 236 mW of second-harmonic power in a 32-cm-long periodically poled silica fiber, corresponding to an average conversion efficiency of 15.2+/-0.5%, is reported. This represents the highest normalized second-harmonic conversion and the highest average second-harmonic power ever reported for a periodically poled silica fiber, to our knowledge. The enhancement is attributed to an improved design of the specialty twin-hole fiber and the extension of the nonlinear interaction length.
Quantum sources that provide broadband biphotons entangled in both polarization and time-energy degrees of freedom are a rich quantum resource that finds many applications in quantum communication, sensing, and metrology. Creating such a source while maintaining high entanglement quality over a broad spectral range is a challenge, which conventionally requires various compensation steps to erase temporal, spectral, or spatial distinguishabilities. Here, we point out that in fact compensation is not always necessary. The key to generate broadband polarization-entangled biphotons via type-II spontaneous parametric downcoversion (SPDC) without compensation is to use nonlinear materials with sufficiently low group birefringence that the biphoton bandwidth becomes dispersion-limited. Most nonlinear crystals or waveguides cannot meet this condition, but it is easily met in fiber-based systems. We reveal the interplay of group birefringence and dispersion on SPDC bandwidth and polarization entanglement quality. We show that periodically poled silica fiber (PPSF) is an ideal medium to generate high-concurrence (>0.977) polarization-entangled photons over a broad spectral range (>77nm), directly and without compensation. This is the highest polarization-entanglement concurrence reported that is maintained over a broad spectral range from a compensation-free source.
Revolver optical fibers (RF) are special type of hollow-core optical fibers with negative curvature of the core-cladding boundary and with cladding that is formed by a one ring layer of capillaries. The physical mechanisms contributing to the waveguiding parameters of RFs are discussed. The optical properties and possible applications of RFs are reviewed. Special attention is paid to the mid-IR hydrogen Raman lasers that are based on RFs and generating in the wavelength region from 2.9 to 4.4 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.