Convex polyhedra are commonly used in the static analysis of programs to represent over-approximations of sets of reachable states of numerical program variables. When the analyzed programs contain nonlinear instructions, they do not directly map to standard polyhedral operations: some kind of linearization is needed. Convex polyhedra are also used in satisfiability modulo theory solvers which combine a propositional satisfiability solver with a fast emptiness check for polyhedra. Existing decision procedures become expensive when nonlinear constraints are involved: a fast procedure to ensure emptiness of systems of nonlinear constraints is needed. We present a new linearization algorithm based on Handelman's representation of positive polynomials. Given a polyhedron and a polynomial (in)equality, we compute a polyhedron enclosing their intersection as the solution of a parametric linear programming problem. To get a scalable algorithm, we provide several heuristics that guide the construction of the Handelman's representation. To ensure the correctness of our polyhedral approximation, our ocaml implementation generates certificates verified by a checker certified in coq.
International audiencePolyhedra form an established abstract domain for inferring runtime properties of programs using abstract interpretation. Computations on them need to be certified for the whole static analysis results to be trusted. In this work, we look at how far we can get down the road of a posteriori verification to lower the overhead of certification of the abstract domain of polyhedra. We demonstrate methods for making the cost of inclusion certificate generation negligible. From a performance point of view, our single-representation, constraints-based implementation compares with state-of-the-art implementations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.