Model checking is the best-known and most successful approach to formally verifying that systems satisfy specifications, expressed as temporal logic formulae. In this article, we develop the theory of equilibrium checking, a related but distinct problem. Equilibrium checking is relevant for multi-agent systems in which system components (agents) are assumed to be acting rationally in pursuit of delegated goals, and is concerned with understanding what temporal properties hold of such systems under the assumption that agents select strategies in equilibrium. The formal framework we use to study this problem assumes agents are modelled using REACTIVE MODULES, a system modelling language that is used in a range of practical model checking systems. Each agent (or player) in a REACTIVE MODULES game is specified as a nondeterministic guarded command program, and each player's goal is specified with a temporal logic formula that the player desires to see satisfied. A strategy for a player in a REACTIVE MODULES game defines how that player selects enabled guarded commands for execution over successive rounds of the game. For this general setting, we investigate games in which players have goals specified in Linear Temporal Logic (in which case it is assumed that players choose deterministic strategies) and in Computation Tree Logic (in which case players select nondeterministic strategies). For each of these cases, after formally defining the game setting, we characterise the complexity of a range of problems relating to Nash equilibria (e.g., the computation or the verification of existence of a Nash equilibrium or checking whether a given temporal formula is satisfied on some Nash equilibrium). We then go on to show how the model we present can be used to encode, for example, games in which the choices available to players are specified using STRIPS planning operators.
We provide conceptual and mathematical foundations for near-term quantum natural language processing (QNLP), and do so in quantum computer scientist friendly terms. We opted for an expository presentation style, and provide references for supporting empirical evidence and formal statements concerning mathematical generality.We recall how the quantum model for natural language that we employ [42] canonically combines linguistic meanings with rich linguistic structure, most notably grammar. In particular, the fact that it takes a quantum-like model to combine meaning and structure, establishes QNLP as quantum-native, on par with simulation of quantum systems. Moreover, the now leading Noisy Intermediate-Scale Quantum (NISQ) paradigm for encoding classical data on quantum hardware, variational quantum circuits, makes NISQ exceptionally QNLP-friendly: linguistic structure can be encoded as a free lunch, in contrast to the apparently exponentially expensive classical encoding of grammar.Quantum speed-up for QNLP tasks has already been established in previous work [116]. Here we provide a broader range of tasks which all enjoy the same advantage.Diagrammatic reasoning is at the heart of QNLP. Firstly, the quantum model interprets language as quantum processes via the diagrammatic formalism of categorical quantum mechanics [38]. Secondly, these diagrams are via ZX-calculus translated into quantum circuits. Parameterisations of meanings then become the circuit variables to be learned:
We present lambeq, the first high-level Python library for Quantum Natural Language Processing (QNLP). The open-source toolkit offers a detailed hierarchy of modules and classes implementing all stages of a pipeline for converting sentences to string diagrams, tensor networks, and quantum circuits ready to be used on a quantum computer. lambeq supports syntactic parsing, rewriting and simplification of string diagrams, ansatz creation and manipulation, as well as a number of compositional models for preparing quantum-friendly representations of sentences, employing various degrees of syntax sensitivity. We present the generic architecture and describe the most important modules in detail, demonstrating the usage with illustrative examples. Further, we test the toolkit in practice by using it to perform a number of experiments on simple NLP tasks, implementing both classical and quantum pipelines.1 Stylised 'λambeq', pronounced "lambek". The name is a tribute to mathematician Joachim Lambek , whose seminal work lay at the intersection of mathematics, logic, and linguistics.
Rational verification is concerned with establishing whether a given temporal logic formula φ is satisfied in some or all equilibrium computations of a multi-agent system – that is, whether the system will exhibit the behaviour φ under the assumption that agents within the system act rationally in pursuit of their preferences. After motivating and introducing the framework of rational verification, we present formal models through which rational verification can be studied, and survey the complexity of key decision problems. We give an overview of a prototype software tool for rational verification, and conclude with a discussion and related work.
Reactive Modules is a high-level specification language for concurrent and multi-agent systems, used in a number of practical model checking tools. Reactive Modules Games is a game-theoretic extension of Reactive Modules, in which concurrent agents in the system are assumed to act strategically in an attempt to satisfy a temporal logic formula representing their individual goal. The basic analytical concept for Reactive Modules Games is Nash equilibrium. In this paper, we describe a tool through which we can automatically verify Nash equilibrium strategies for Reactive Modules Games. Our tool takes as input a system, specified in the Reactive Modules language, a representation of players' goals (expressed as CTL formulae), and a representation of players strategies; it then checks whether these strategies form a Nash equilibrium of the Reactive Modules Game passed as input. The tool makes extensive use of conventional temporal logic satisfiability and model checking techniques. We first give an overview of the theory underpinning the tool, briefly describe its structure and implementation, and conclude by presenting a worked example analysed using the tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.