Individual graphene oxide sheets subjected to chemical reduction were electrically characterized as a function of temperature and external electric fields. The fully reduced monolayers exhibited conductivities ranging between 0.05 and 2 S/cm and field effect mobilities of 2-200 cm2/Vs at room temperature. Temperature-dependent electrical measurements and Raman spectroscopic investigations suggest that charge transport occurs via variable range hopping between intact graphene islands with sizes on the order of several nanometers. Furthermore, the comparative study of multilayered sheets revealed that the conductivity of the undermost layer is reduced by a factor of more than 2 as a consequence of the interaction with the Si/SiO2 substrate.
We report on the preparation and structural characterization of CdSe nanocrystals, which are covered by a multishell structure from CdS and ZnS. By using the newly developed successive ion layer adhesion and reaction (SILAR) technique, we could gradually change the shell composition from CdS to ZnS in the radial direction. Because of the stepwise adjustment of the lattice parameters in the radial direction, the resulting nanocrystals show a high crystallinity and are almost perfectly spherical, as was investigated by X-ray diffraction and electron microscopy. Also, due to the radial increase of the respective valence- and conduction-band offsets, the nanocrystals are well electronically passivated. This leads to a high fluorescence quantum yield of 70-85% for the amine terminated multishell particles in organic solvents and a quantum yield of up to 50% for mercapto propionic acid-covered particles in water. Finally, we present experimental results that substantiate the superior photochemical and colloidal stability of the multishell particles.
We present fluorescence decay measurements of single ZnS covered CdSe nanocrystals. It is shown that the fluorescence decay time is fluctuating during the investigation leading to a multiexponential decay even for a single nanocrystal. In combination with measurements of the fluorescence blinking behavior we find that a high fluorescence intensity is correlated with a long fluorescence decay time. This is consistent with a model of fluctuating nonradiative decay channels leading to variable dynamic quenching processes of the excited state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.