BackgroundVisceral leishmaniasis (VL), caused by protozoa of the Leishmania donovani complex, is a widespread parasitic disease of great public health importance; without effective chemotherapy symptomatic VL is usually fatal. Distinction of asymptomatic carriage from progressive disease and the prediction of relapse following treatment are hampered by the lack of prognostic biomarkers for use at point of care.Methodology/Principal FindingsAll IgG subclass and IgG isotype antibody levels were determined using unpaired serum samples from Indian and Sudanese patients with differing clinical status of VL, which included pre-treatment active VL, post-treatment cured, post-treatment relapsed, and post kala-azar dermal leishmaniasis (PKDL), as well as seropositive (DAT and/or rK39) endemic healthy controls (EHCs) and seronegative EHCs. L. donovani antigen-specific IgG1 levels were significantly elevated in relapsed versus cured VL patients (p<0.0001). Using paired Indian VL sera, consistent with the known IgG1 half-life, IgG1 levels had not decreased significantly at day 30 after the start of treatment (p = 0.8304), but were dramatically decreased by 6 months compared to day 0 (p = 0.0032) or day 15 (p<0.0001) after start of treatment. Similarly, Sudanese sera taken soon after treatment did not show a significant change in the IgG1 levels (p = 0.3939). Two prototype lateral flow immunochromatographic rapid diagnostic tests (RDTs) were developed to detect IgG1 levels following VL treatment: more than 80% of the relapsed VL patients were IgG1 positive; at least 80% of the cured VL patients were IgG1 negative (p<0.0001).Conclusions/SignificanceSix months after treatment of active VL, elevated levels of specific IgG1 were associated with treatment failure and relapse, whereas no IgG1 or low levels were detected in cured VL patients. A lateral flow RDT was successfully developed to detect anti-Leishmania IgG1 as a potential biomarker of post-chemotherapeutic relapse.
Pregnant women with SM lack pregnancy-specific malaria immunity, and this correlates with heightened inflammatory cytokine concentrations, low haemoglobin levels and high parasite density, suggesting that failure of antibody to control parasitaemia may contribute to SM pathogenesis.
BackgroundMolecular methods to detect Leishmania parasites are considered specific and sensitive, but often not applied in endemic areas of developing countries due to technical complexity. In the present study isothermal, nucleic acid sequence based amplification (NASBA) was coupled to oligochromatography (OC) to develop a simplified detection method for the diagnosis of leishmaniasis. NASBA-OC, detecting Leishmania RNA, was evaluated using clinical samples from visceral leishmaniasis patients from East Africa (n = 30) and cutaneous leishmaniasis from South America (n = 70) and appropriate control samples.ResultsAnalytical sensitivity was 10 parasites/ml of spiked blood, and 1 parasite/ml of culture. Diagnostic sensitivity of NASBA-OC was 93.3% (95% CI: 76.5%-98.8%) and specificity was 100% (95% CI: 91.1%-100%) on blood samples, while sensitivity and specificity on skin biopsy samples was 98.6% (95% CI: 91.2%-99.9%) and 100% (95% CI: 46.3%-100%), respectively.ConclusionThe NASBA-OC format brings implementation of molecular diagnosis of leishmaniasis in resource poor countries one step closer.
For the epidemiological monitoring and clinical case management of leishmaniasis, determination of the causative Leishmania species gains importance. Current assays for the Old World often suffer from drawbacks in terms of validation on a geographically representative sample set and the ability to recognize all species complexes. We want to contribute to standardized species typing for Old World leishmaniasis. We determined the ribosomal DNA internal transcribed spacer 1 sequence of 24 strains or isolates, and validated four species-specific polymerase chain reactions (PCRs) amplifying this target. They discriminate L. aethiopica, L. tropica, L. major, and the L. donovani complex, use the same cycling conditions, and include an internal amplification control. Our PCRs amplify 0.1 pg of Leishmania DNA, while being 100% specific for species identification on an extensive panel of geographically representative strains and isolates. Similar results were obtained in an endemic reference laboratory in Kenya. Species could also be identified in clinical specimens. The presented PCRs require only agarose gel detection, and have several other advantages over many existing assays. We outline potential problems, suggest concrete solutions for transferring the technique to other settings, and deliver the proof-of-principle for analyzing clinical samples.
Summaryobjective To estimate the sensitivity and specificity of the OligoC-TesT and nucleic acid sequencebased amplification coupled to oligochromatography (NASBA-OC) for molecular detection of Leishmania in blood from patients with confirmed visceral leishmaniasis (VL) and healthy endemic controls from Kenya.methods Blood specimens of 84 patients with confirmed VL and 98 endemic healthy controls from Baringo district in Kenya were submitted to both assays.results The Leishmania OligoC-TesT showed a sensitivity of 96.4% (95% confidence interval [CI]: 90-98.8%) and a specificity of 88.8% (95% CI: 81-93.6%), while the sensitivity and specificity of the NASBA-OC were 79.8% (95% CI: 67-87%) and 100% (95% CI: 96.3-100%), respectively.conclusion Our findings indicate high sensitivity of the Leishmania OligoC-TesT on blood while the NASBA-OC is a better marker for active disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.