Visceral leishmaniasis is a potentially fatal disease endemic to large parts of Asia and Africa, primarily caused by the protozoan parasite Leishmania donovani. Here, we report a high-quality reference genome sequence for a strain of L. donovani from Nepal, and use this sequence to study variation in a set of 16 related clinical lines, isolated from visceral leishmaniasis patients from the same region, which also differ in their response to in vitro drug susceptibility. We show that wholegenome sequence data reveals genetic structure within these lines not shown by multilocus typing, and suggests that drug resistance has emerged multiple times in this closely related set of lines. Sequence comparisons with other Leishmania species and analysis of single-nucleotide diversity within our sample showed evidence of selection acting in a range of surface-and transport-related genes, including genes associated with drug resistance. Against a background of relative genetic homogeneity, we found extensive variation in chromosome copy number between our lines. Other forms of structural variation were significantly associated with drug resistance, notably including gene dosage and the copy number of an experimentally verified circular episome present in all lines and described here for the first time. This study provides a basis for more powerful molecular profiling of visceral leishmaniasis, providing additional power to track the drug resistance and epidemiology of an important human pathogen.[Supplemental material is available for this article.]Leishmaniases are a complex of diseases that range from self-curing lesions to gross disfigurations and potentially deadly visceral disease. The diseases are caused by protozoan parasites that are transmitted by sandflies in 88 countries and infect an estimated 12 million people (www.who.int/leishmaniasis/en/). Parasites of the Leishmania genus are remarkably biologically, clinically, and epidemiologically diverse and present enormous differences in disease tropism. The mildest form is cutaneous leishmaniasis, which is caused by Leishmania major and other species, and is largely limited to lesions around the area of a sandfly bite-though a diffuse form can also occur. Disfiguring mucocutaneous leishmaniasis is due to the destruction of nasopharyngeal tissue by parasites such as L. braziliensis. More significantly, visceral leishmaniasis is caused by parasites of the L. donovani species complex that can spread to internal organs and cause death.In 2005, sequencing the genome of L. major identified 8311 protein-coding genes and provided a framework for future comparative genomic studies (Ivens et al. 2005). The genome elucidated the full structural architecture of Leishmania chromosomes, which includes an unusual pattern of genes distributed in large directional clusters. Subsequently, the genomes of L. braziliensis and L. infantum were described-the latter is a member of the L. donovani complex (Peacock et al. 2007). A detailed comparison of these first three Leishmania genomes re...
Leishmania species can influence SbV treatment outcome in patients with CL. Therefore, parasite identification is of utmost clinical importance, because it should lead to a species-oriented treatment.
PCR-restriction fragment length polymorphism analysis of heat shock protein 70 genes discriminates most neotropical Leishmania species, as well as Trypanosoma cruzi. The assay, combined with capillary electrophoresis in a microchip device, may be applied directly on clinical samples with a high sensitivity, hence supporting clinical and epidemiological monitoring of leishmaniasis
Leishmania species of the subgenus Viannia and especially Leishmania braziliensis are responsible for a large proportion of New World leishmaniasis cases. The reproductive mode of Leishmania species has often been assumed to be predominantly clonal, but remains unsettled. We have investigated the genetic polymorphism at 12 microsatellite loci on 124 human strains of Leishmania braziliensis from 2 countries, Peru and Bolivia. There is substantial genetic diversity, with an average of 12.4 ؎ 4.4 alleles per locus. There is linkage disequilibrium at a genome-wide scale, as well as a substantial heterozygote deficit (more than 50% the expected value from Hardy؊Weinberg equilibrium), which indicates high levels of inbreeding. These observations are inconsistent with a strictly clonal model of reproduction, which implies excess heterozygosity. Moreover, there is large genetic heterogeneity between populations within countries (Wahlund effect), which evinces a strong population structure at a microgeographic scale. Our findings are compatible with the existence of population foci at a microgeographic scale, where clonality alternates with sexuality of an endogamic nature, with possible occasional recombination events between individuals of different genotypes. These findings provide key clues on the ecology and transmission patterns of Leishmania parasites.clonality ͉ microsatellites ͉ population genetics ͉ endogamyl ͉ heterozygote defiency
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.