Abstract. The purpose of this study was to relate regional variation in litter mass-loss rates (first year) in pine forests to climate across a large, continental-scale area. The variation in mass-loss rate was analyzed using 39 experimental sites spanning climatic regions from the subarctic to subtropical and Mediterranean: the latitudinal gradient ranged from 31 N to 70 N and may represent the the largest geographical area that has ever been sampled and observed for the purpose of studying biogeochemical processes. Because of unified site design and uniform laboratory procedures, data from all sites were directly comparable and permitted a determination of the relative influence of climate versus substrate quality viewed from the perspective of broad regional scales.Simple correlation applied to the entire data set indicated that annual actual evapotranspiration (AET) should be the leading climatic constraint on mass-loss rates (R2d = 128 0.496). The combination of AET, average July temp. and average annual temp. could explain about 70% of the sites' variability on litter mass-loss. In an analysis of 23 Scots pine sites north of the Alps and Carpatians AET alone could account for about 65% of the variation and the addition of a substrate-quality variable was sufficiently significant to be used in a model.The influence of litter quality was introduced into a model, using data from 11 sites at which litter of different quality had been incubated. These sites are found in Germany, the Netherlands, Sweden and Finland. At any one site most (> 90%/6) of the variation in mass-loss rates could be explained by one of the litter-quality variables giving concentration of nitrogen, phosphorus or water solubles. However, even when these models included nitrogen or phosphorus even small changes in potential evapotranspiration resulted in large changes in early-phase decay rates.Further regional subdivision of the data set, resulted in a range of strength in the relationship between loss rate and climatic variables, from very weak in Central Europe to strong for the Scandinavian and Atlantic coast sites (Rdj = 0.912; AET versus litter mass loss). Much of the variation in observed loss rates could be related to continental versus marine/Atlantic influences. Inland locations had mass-loss rates lower than should be expected on the basis of for example AET alone. Attempts to include seasonality variables were not successful. It is clear that either unknown errors and biases, or, unknown variables are causing these regional differences in response to climatic variables. Nevertheless these results show the powerful influence of climate as a control of the broad-scale geography of mass-loss rates and substrate quality at the stand level.Some of these relationships between mass-loss rate and climatic variables are among the highest ever reported, probably because of the care taken to select uniform sites and experimental methods. This suggest that superior, base line maps of predicted mass-loss rates could be produced using climatic...
A study was made of the retention times of N and P in the leaf biomass and their relationship with the retranslocation percentages and the leaf longevities in some woody species in Central Spain. The retention times of both nutrients were strongly related to the nutrient status of each species. These results suggest that a prolonged retention time is a way of increasing nutrient use efficiency in conditions of low nutrient availability. Plants can increase the retention time of nutrients in their leaf biomass by means of an increase in leaf longevity and/or by means of an increase in retranslocation efficiency. However, the effect of the retranslocation efficiency on retention times was almost negligible compared with the effect of leaf longevity. This suggests that an increase in leaf longevity is probably the best adaptation for increasing efficiency in the use of nutrients.
Summary 1Cost-benefit models predict that leaf life span depends on its initial photosynthetic rate and construction cost and on the rate of decline in photosynthesis with age. Leaf gas exchange rates and N contents were measured in nine woody evergreen Mediterranean species with different leaf life spans to determine the effects of leaf ageing on photosynthetic N use efficiency (PNUE). N costs of leaf construction were assumed to be in part dependent on N resorption from senescing leaves. 2 Leaf ageing had significant negative effects on photosynthetic rates per unit leaf area. As N content per unit leaf area did not decline until the end of leaf life, PNUE also decreased with age. PNUE generally declined faster in species with a shorter leaf life span. There were no significant interspecific differences in maximum CO 2 assimilation rates per unit leaf area and in N resorption that could be related to differences in leaf life span. 3 As PNUE decreases with leaf age, shedding of the older leaves and retranslocation of N to the current year's leaf biomass would result in an increase in the mean instantaneous efficiency of use of the N retranslocated. However, total CO 2 assimilation can be improved by such shedding only when the increase in the efficiency of use of the remobilized N compensates for the remaining N lost in the shed leaves. 4 The photosynthesis of the old leaf cohorts exceeded the increase in photosynthesis that would be obtained from the N retranslocated to the younger leaves, given the observed efficiencies of N resorption. The retention of old leaves thus resulted in a higher whole-canopy CO 2 assimilation, despite their low PNUE.
Abstract. We have observed 44 planetary nebulae (PNe) in the direction of the Galactic bulge, and merged our data with published ones. We have distinguished, in the merged sample of 164 PNe, those PNe most likely to prtain physically to the Galactic bulge and those most likely to belong to the Galactic disk. We have determined the chemical composition of all the 164 objects in a coherent way. We looked for stellar emission features and discovered 14 (7) The oxygen abundance distribution of bulge PNe is similar in shape to that of the metallicity distribution of bulge giants, but significantly narrower. (8) The location of SB 32 (PN G 349.7-09.1) in the (V lsr , l II ) diagram and its low oxygen abundance argues that it probably belongs to the halo population.
We studied stomatal responses to decreasing predawn water potential (Psipd) and increasing leaf-to-air water vapor pressure difference (VPD) of co-occurring woody Mediterranean species with contrasting leaf habits and growth form. The species included two evergreen oaks (Quercus ilex subsp. ballota (Desf.) Samp. and Q. suber L.), two deciduous oaks (Q. faginea Lam. and Q. pyrenaica Willd.) and two deciduous shrubs (Pyrus bourgaeana Decne. and Crataegus monogyna Jacq.). Our main objective was to determine if stomatal sensitivity is related to differences in leaf life span and leaf habit. The deciduous shrubs had the least conservative water-use characteristics, with relatively high stomatal conductance and low stomatal sensitivity to soil and atmospheric drought. As a result, Psipd decreased greatly in both species during the growing season, resulting in early leaf abscission in the summer. The deciduous oaks showed intermediate water-use characteristics, having maximum stomatal conductances and CO2 assimilation rates similar to or even higher than those of the deciduous shrubs. However, they had greater stomatal sensitivity to soil drying and showed less negative Psipd values than the deciduous shrubs. The evergreen oaks, and especially the species with the greatest leaf longevity, Q. ilex, exhibited the most conservative water-use behavior, having lower maximum stomatal conductances and greater sensitivity to VPD than the deciduous species. As a result, Psipd decreased less during the growing season in the evergreens than in the deciduous species, which may contribute to greater leaf longevity by avoiding irreversible damage during the summer drought. However, the combination of low maximum CO2 assimilation rates and high stomatal sensitivity to drought must have a negative impact on the final carbon budget of leaves with a long life span.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.