Over the last decade, free-space quantum key distribution (QKD), a secure key sharing protocol, has risen in popularity due the adaptable nature of free-space networking and the near-term potential to share quantum-secure encryption keys over a global scale. While the literature has primarily focused on polarization based-protocols for free-space transmission, there are benefits to implementing other protocols, particularly when operating at fast clock-rates, such as in the GHz. In this paper, we experimentally demonstrate a time-bin QKD system, implementing the coherent one-way (COW) at 1 GHz clock frequency, utilizing a free-space channel and receiver. We demonstrate the receiver’s robustness to atmospheric turbulence, maintaining an operational visibility of 92%, by utilizing a lab-based turbulence simulator. With a fixed channel loss of 16 dB, discounting turbulence, we obtain secret key rate (SKR) of 6.4 kbps, 3.4 kbps, and 270 bps for three increasing levels of turbulence. Our results highlight that turbulence must be better accounted for in free-space QKD modelling due to the additional induced loss.
The full time-jitter response of a single-photon detector can make a significant contribution to the quantum bit error rate (QBER) of high repetition rate quantum key distribution (QKD) implementations. Although there have been studies into understanding the contribution for single-mode optical fiber coupled single-photon detectors, the contribution of larger, multimode core diameters to the QBER have not been explored in detail. With the growing importance of free-space QKD, which typically use multimode fibers to reduce coupling loss, it is vitally important to understand how the multimode fiber coupling will impact the total QBER. This work studies the impact of the time-jitter contribution to QBER when coupling a commercial off-the-shelf silicon single-photon avalanche diode with various multimode fibers while simulating operating at 1 GHz with empirical measurements taken at 1 MHz repetition rate. It was found that step-index multimode fibers can significantly increase the QBER, while graded-index fibers can provide an QBER contribution similar to a single-mode fiber. The results highlight that there is a significant benefit in using graded index multimode fibers for a free-space QKD receiver, particularly for high repetition rate applications.
Free-space quantum key distribution (QKD) has been gaining popularity in recent years due to its advantages in creating networking options for the quantum internet. One of the main challenges to be addressed in QKD is the achievable secret key rate, which must meet current and future demand. Some of the existing solutions include the use of higher bandwidth electronics, untrusted relay architectures such as Twin-Field QKD, or high dimensional QKD. In this work, we proposed the use of a combination of spatial-multiplexing and time-division techniques, together with the use of 2D single-photon avalanche diode arrays to increase the final throughput. The main challenge in a free-space scenario is the effects introduced by turbulence. This paper demonstrates how appropriate time-division of the spatial-modes can reduce the quantum bit error rate due to optical crosstalk from 36% to 0%. With this technique, we believe the future need for superconducting nanowires single photon detectors, in some free-space QKD applications, can be relaxed, obtaining more cost-effective receiver systems.
Quantum key distribution (QKD) is a quantum communications protocol which provides the growth of encryption keys under guaranteed security. Due to the single-photon nature of many QKD protocols, QKD systems can be optically jammed by overwhelming a receiver with many photons at wavelengths at which the single photon detectors are responsive, causing a prohibitively high quantum bit error rate (QBER). In satellite QKD (SatQKD), which relies on communication during brief satellite visual contact, short jamming periods could prevent access to secure communications for much longer periods of time. Optical jamming (OJ) can be achieved both from within line-of-sight by targeting the receiver with a light source, or, in the case of downlink SatQKD, from without line-of-sight by reflecting OJ light off the transmitting satellite.1 The latter attack can be effective 1000km from the ground station, which presents challenges to the deployment of SatQKD in mission-critical applications. In this work, we present two investigations for OJ attacks on SatQKD. Firstly, we present an experimental demonstration utilizing SPAD array technology to locate and mitigate within line-of-sight OJ at long range. Secondly, we present simulations quantifying the effectiveness of without line-of-sight OJ against SatQKD systems and outline mitigation techniques inspired by RF communications. Implementation of the mitigation techniques will be essential for defence applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.