During the Persian Gulf War, soldiers were injured with depleted uranium (DU) fragments. To assess the potential health risks associated with chronic exposure to DU, Sprague Dawley rats were surgically implanted with DU pellets at 3 dose levels (low, medium and high). Biologically inert tantalum (Ta) pellets were used as controls. At 1 day and 6, 12, and 18 months after implantation, the rats were euthanized and tissue samples collected. Using kinetic phosphorimetry, uranium levels were measured. As early as 1 day after pellet implantation and at all subsequent sample times, the greatest concentrations of uranium were in the kidney and tibia. At all time points, uranium concentrations in kidney and bone (tibia and skull) were significantly greater in the high-dose rats than in the Ta-control group. By 18 months post-implantation, the uranium concentration in kidney and bone of low-dose animals was significantly different from that in the Ta controls. Significant concentrations of uranium were excreted in the urine throughout the 18 months of the study (224 +/- 32 ng U/ml urine in low-dose rats and 1010 +/- 87 ng U/ml urine in high-dose rats at 12 months). Many other tissues (muscle, spleen, liver, heart, lung, brain, lymph nodes, and testicles) contained significant concentrations of uranium in the implanted animals. From these results, we conclude that kidney and bone are the primary reservoirs for uranium redistributed from intramuscularly embedded fragments. The accumulations in brain, lymph nodes, and testicles suggest the potential for unanticipated physiological consequences of exposure to uranium through this route.
Gas chromatography-mass spectrometry with selected-ion monitoring was used to measure the yields of radiation-induced base products in aqueous solutions of native or heat-denatured DNA irradiated in the dose range 20-100 Gy. These DNA solutions were saturated with nitrous oxide, nitrogen, air or 20% oxygen in nitrous oxide during irradiation. The products measured were as follows: 5,6-dihydrothymine; 5-hydroxy-5,6-dihydrothymine; 5,6-dihydrothymine (thymine glycol); 5-hydroxy-5,6-dihydrocytosine; 5,6-dihydroxy-5,6- dihydrocytosine (cytosine glycol); 4,6-diamino-5-formamidopyrimidine; 7,8-dihydro-8-oxoadenine (8-hydroxyadenine); 2,6-diamino-4-hydroxy-5- formamidopyrimidine; and 7,8-dihydro-8-oxoguanine (8-hydroxyguanine). In oxygenated solutions, 5,6-dihydrothymine, 5-hydroxy-5,6-dihydrothymine and 5-hydroxy-5,6-dihydrocytosine were not formed. The yields of all products, other than 5,6-dihydrothymine, were greater in irradiated DNA samples from N2O-saturated solutions than from N2-saturated solutions. In N2-saturated solutions the yield of 8-hydroxyadenine was low and 8-hydroxyguanine was undetectable. Yields of pyrimidine products in heat-denatured DNA were greater than those in native DNA using all types of gases. However, the effects of DNA conformation on the yields of purine products were dependent on the type of gas used to saturate the irradiated DNA solutions. Yields of formamidopyrimidines were generally lower in solutions of DNA irradiated in the native than in the heat-denatured conformation. In air-saturated solutions of DNA, yields of 8-hydroxypurines were not influenced greatly by DNA conformation. In DNA solutions saturated with N2O/O2, 8-hydroxypurine formation was more favourable in the heat-denatured conformation than in the native conformation. On the other hand, in deoxygenated solutions, formation of 8-hydroxypurines was favoured in the native conformation. Data indicate that DNA conformation and the type of gas used to saturate the irradiated solutions have a profound influence on yields of base products in DNA.
Aqueous solutions of calf thymus deoxyribonucleic acid (DNA) were exposed to hydrogen peroxide in the presence of air. Base products formed in DNA were identified and quantitated following acid hydrolysis and trimethylsilylation using gas chromatography-mass spectrometry. The yields of these products were dependent upon the hydrogen peroxide concentration, and increased in the following order: 8-hydroxyadenine, cytosine glycol, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine, thymine glycol, and 4,6-diamino-5-formamidopyrimidine. Previous studies have shown that these compounds are typically formed in DNA in aqueous solution by hydroxyl radicals generated by ionizing radiation. Hydrogen peroxide is thought to participate in a Fenton-like reaction with transition metals, which are readily bound to DNA in trace quantities, resulting in the production of hydroxyl radicals close to the DNA. This proposed mechanism was examined by exposing DNA to hydrogen peroxide either in the presence of a hydroxyl radical scavenger or following pretreatment of DNA with metal-ion chelators. The results indicate that trace quantities of transition metal ions can react readily with hydrogen peroxide to produce radical species. The production of radical species was monitored by determining the altered bases that resulted from the reaction between radicals and DNA. The yields of the base products were reduced by 40 to 60% with 10 mmol dm-3 of dimethyl sulfoxide. A 100-fold increase in the concentration of dimethyl sulfoxide did not result in a further reduction in hydrogen peroxide-induced base damage. DNA which was freed from bound metal ions by pretreatment with metal ion chelators followed by exhaustive dialysis was found to be an ineffective substrate for hydrogen peroxide. The yields of base products measured in this DNA were at background levels. These results support the role of metal ions bound to DNA in the site-specific formation of highly reactive radical species, most likely hydroxyl radicals, in hydrogen peroxide-induced damage to the bases in DNA.
Gas chromatography-mass spectrometry with selected-ion monitoring was used to study radiation-induced damage to DNA. Quantitative analysis of modified purine and pyrimidine bases resulting from exposure to ionizing radiation using this technique is dependent upon the selection of appropriate internal standards and calibration of the mass spectrometer for its response to known quantities of the internal standards and the products of interest. The compounds 6-azathymine and 8-azaadenine were found to be suitable internal standards for quantitative measurement of base damage in DNA. For the purpose of calibration of the mass spectrometer. relative molar response factors for intense characteristic ions were determined for the trimethylsilyl derivatives of 5-hydroxyuracil, thymine glycol, and 5,6-dihydrothymine using 6-azathymine, and for the trimethylsilyl derivatives of 4,6-diamino-5-formamidopyrimidine, 8-hydroxyadenine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 8-hydroxyguanine using 8-azaadenine. Accurate measurement of the yield of radiation-induced modifications to the DNA bases is also dependent upon two chemical steps in which the purines and pyrimidines are released from the sugar-phosphate backbone and then derivatized to make them volatile for gas chromatography. The completeness of these reactions, in addition to assessing the stability of the modified DNA bases in acid and their trimethylsilylated derivatives over the time necessary to complete the experimental analysis was also examined. Application of this methodology to the measurement of radiation-induced base modification in heat-denatured, nitrous oxidesaturated aqueous solutions of DNA is presented.
During the 1991 Persian Gulf War several US military personnel were wounded by shrapnel fragments consisting of depleted uranium. These fragments were treated as conventional shrapnel and were not surgically removed to spare excessive tissue damage. Uranium bioassays conducted over a year after the initial uranium injury indicated a significant increase in urine uranium levels above natural background levels. The potential mutagenic effects of depleted uranium are unknown. To assess the potential mutagenic effects of long-term exposure to internalized depleted uranium, Sprague-Dawley rats were implanted with depleted uranium and their urine and serum were evaluated for mutagenic potential at various times after pellet implantation using the Ames Salmonella reversion assay. Tantalum, an inert metal widely used in prosthetic devices was used for comparison. Enhancement of mutagenic activity in Salmonella typhimurium strain TA98 and the Ames II mixed strains (TA7001-7006) was observed in urine samples from animals implanted with depleted uranium pellets. In contrast, urine samples from animals implanted with tantalum did not show a significant enhancement of mutagenic activity in these strains. In depleted uranium-implanted animals, urine mutagenicity increased in a dose- and time-dependent manner demonstrating a strong positive correlation with urine uranium levels (r = 0.995, P < 0.001). There was no mutagenic enhancement of any bacterial strain detected in the sera of animals implanted with either depleted uranium or tantalum pellets. The results suggest that uranium content in the urine is correlated with urine mutagenicity and that urinary mutagenicity might be used as a biomarker to detect exposure to internalized uranium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.