We perform a series of simulations of evolving star clusters using AMUSE (the Astrophysical Multipurpose Software Environment), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions, and contain a tidal cut-off. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noise introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a run-away cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as "dynamical" and "relaxation" dominated respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.
The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.