We explore the boundary of dark matter haloes through their bias and velocity profiles. Using cosmological N-body simulations, we show that the bias profile exhibits a ubiquitous trough that can be interpreted as created by halo accretion that depletes material around the boundary. The inner edge of the active depletion region is marked by the location of the maximum mass inflow rate that separates a growing halo from the draining environment. This inner depletion radius can also be interpreted as the radius enclosing a highly complete population of splashback orbits, and matches the optimal exclusion radius in a halo model of the large-scale structure. The minimum of the bias trough defines a characteristic depletion radius, which is located within the infall region bounded by the inner depletion radius and the turnaround radius, while approaching the turnaround radius in low mass haloes that have stopped mass accretion. The characteristic depletion radius depends the most on halo mass and environment. It is approximately 2.5 times the virial radius and encloses an average density of ∼40 times the background density of the universe, independent on halo mass but dependent on other halo properties. The inner depletion radius is smaller by $10-20\%$ and encloses an average density of ∼63 times the background density. These radii open a new window for studying the properties of haloes.
Video-based learning is most effective when students are engaged with video content; however, the literature has yet to identify students' viewing behaviors and ground them in theory. This paper addresses this need by introducing a framework of active viewing, which is situated in an established model of active learning to describe students' behaviors while learning from video. We conducted a field study with 460 undergraduates in an Applied Science course using a video player designed for active viewing to evaluate how students engage in passive and active video-based learning. The concept of active viewing, and the role of interactive, constructive, active, and passive behaviors in videobased learning, can be implemented in the design and evaluation of video players.
Based on a large group/cluster catalog recently constructed from the DESI Legacy Imaging Surveys DR9 using an extended halo-based group finder, we measure and model the group–galaxy weak-lensing signals for groups/clusters in a few redshift bins within redshift range 0.1 ≤ z < 0.6. Here, the background shear signals are obtained based on the DECaLS survey shape catalog, derived with the Fourier_Quad method. We divide the lens samples into five equispaced redshift bins and seven mass bins, which allow us to probe the redshift and mass dependence of the lensing signals, and hence the resulting halo properties. In addition to these sample selections, we also check the signals around different group centers, e.g., the brightest central galaxy, the luminosity-weighted center, and the number-weighted center. We use a lensing model that includes off-centering to describe the lensing signals that we measure for all mass and redshift bins. The results demonstrate that our model predictions for the halo masses, biases, and concentrations are stable and self-consistent among different samples for different group centers. Taking advantage of the very large and complete sample of groups/clusters, as well as the reliable estimations of their halo masses, we provide measurements of the cumulative halo mass functions up to redshift z = 0.6, with a mass precision at 0.03 ∼ 0.09 dex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.