Clouds are a critical component of the Earth's coupled water and energy cycles. Poor understanding of cloud–radiation–dynamics feedbacks results in large uncertainties in forecasting human-induced climate changes. Better understanding of cloud microphysical and dynamical processes is critical to improving cloud parameterizations in climate models as well as in cloud-resolving models. Airborne in situ and remote sensing can make critical contributions to progress. Here, a new integrated cloud observation capability developed for the University of Wyoming King Air is described. The suite of instruments includes the Wyoming Cloud Lidar, a 183- GHz microwave radiometer, the Wyoming Cloud Radar, and in situ probes. Combined use of these remote sensor measurements yields more complete descriptions of the vertical structure of cloud microphysical properties and of cloud-scale dynamics than that attainable through ground-based remote sensing or in situ sampling alone. Together with detailed in situ data on aerosols, hydrometeors, water vapor, thermodynamic, and air motion parameters, an advanced observational capability was created to study cloud-scale processes from a single aircraft. The Wyoming Airborne Integrated Cloud Observation (WAICO) experiment was conducted to demonstrate these new capabilities and examples are presented to illustrate the results obtained.
The horizontal pressure gradient force is the single most important dynamical term in the equation of motion that governs the forcing of the atmosphere. It is well known that the slope of an isobaric surface is a measure of the horizontal pressure gradient force. Measurement of this force over mesoscale distances using an airborne platform has been attempted for over two decades in order to understand the dynamics of various wind systems. The most common technique has been to use a radar altimeter to measure the absolute height of an isobaric surface above sea level. Typical values of the horizontal pressure gradient force in the atmosphere are quite small, amounting to an isobaric surface slope of 0.0001 for a 10 m s Ϫ1 geostrophic wind at middle latitudes. Detecting the horizontal pressure gradient over irregular terrain using an instrumented aircraft has proven to be especially difficult since correction for the underlying terrain features must be made. Use of the global positioning system (GPS) is proposed here as a means to infer the horizontal pressure gradient force without the need for altimetry and terrain registration over irregular surface topography. Differential kinematic processing of data from dual-frequency, carrier phase tracking receivers on research aircraft with similar static base station receivers enables the heights of an isobaric surface to be determined with an accuracy estimated to be a few decimeters. Comparison of results obtained by conventional altimetry-based methods over the ocean and Lake Michigan with GPS reveals the potential of the GPS method at determining the horizontal pressure gradient force, even over complex terrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.