Volcanic emissions are a critical pathway in Earth’s carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes—3760 ± [600, 310] tons day−1 CO2 and 5150 ± [730, 340] tons day−1 SO2—for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near–real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
Identification of unambiguous signals of volcanic unrest is crucial in hazard assessment. Processes leading to phreatic and phreatomagmatic eruptions remain poorly understood, inhibiting effective eruption forecasting. Our 5‐year gas record from Poás volcano, combined with geophysical data, reveals systematic behavior associated with hydrothermal‐magmatic eruptions. Three eruptive episodes are covered, each with distinct geochemical and geophysical characteristics. Periods with larger eruptions tend to be associated with stronger excursions in monitoring data, particularly in SO2/CO2 and SO2 flux. The explosive 2017 phreatomagmatic eruption was the largest eruption at Poás since 1953 and was preceded by dramatic changes in gas and geophysical parameters. The use of drones played a crucial role in gas monitoring during this eruptive period. Hydrothermal sealing and volatile accumulation, followed by top‐down reactivation of a shallow previously emplaced magma body upon seal failure, are proposed as important processes leading to and contributing to the explosivity of the 2017 eruption.
Gas measurements using unmanned aerial vehicles, or drones, were undertaken at Turrialba volcano, Costa Rica, and Masaya volcano, Nicaragua, in 2016 and 2017. These two volcanoes are the largest time‐integrated sources of gas in the Central American Volcanic Arc, and both systems are currently extremely active with potential for sudden destabilization. We employed a series of miniaturized drone‐mounted instrumentation including a mini‐DOAS, two MultiGAS instruments, and an optical particle counter, supplemented by ground‐based measurements. Payloads were typically 1–1.5 kg and flight times were 10–15 min. The measurements were both accurate and precise due to the inherent sensitivity of the instrumentation and the high gas concentrations, which the drones were able to sample. The quality of data obtained by our drones was comparable to that obtained by our ground‐based measurements. At Turrialba in April 2017, we measured an average SO2 flux of 1,380 ± 280 T/day, CO2/SO2 of 6.5, and H2O/SO2 of 27.8. Using these values, we calculated a CO2 flux of 6,170 T/day and an H2O flux of 10,790 T/day. At Masaya in May 2017, the average SO2 flux was 1,560 ± 180 T/day, with CO2/SO2 of 3.9 and H2O/SO2 of 62.3, giving a mean CO2 flux of 4,150 T/day and mean H2O flux of 27,330 T/day. The elevated carbon and water fluxes and ratios are indicative of underlying magmas that are enriched in these components, resulting in the high levels of activity observed.
Abstract. Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO 2 , H 2 S, CO 2 , GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Scientific knowledge of transient and difficult-to-access airborne volcanic emissions comes primarily from remote sensing observations, and a few in situ data from sporadic heroic or inadvertent airborne encounters. In the past, patchy knowledge of the composition and behaviour of such plumes from explosive volcanic eruptions, and associated drifting ash and gas clouds, have centrally contributed to unwanted and dangerous aircraft encounters that have put crews at risk and, in some cases, greatly damaged aircraft. Thus, improved knowledge of boundary conditions and plume composition, as inputs to both mass retrieval and predictive models for cloud trajectories, would be of benefit.In this paper, we describe how small robotic unmanned aerial vehicles (sUAVs) can address a variety of measurements that are typically beyond the reach of, and sometimes too dangerous for, manned aircraft. The direct measurements and sampling that can be achieved by sUAVs address serious gaps in knowledge of volcanic processes, and provide important validation data for estimations of volcanogenic ash and gas concentrations gleaned using remote sensing techniques. These data, in turn, constrain key proximal and distal boundary conditions for aerosol and gas transport models on which are based a number of decisions and evaluations by hazard responders and regulatory agencies.We briefly describe a case study from our ongoing field study at Turrialba Volcano in Costa Rica, where we are conducting an international campaign of systematic airborne in situ measurements of volcanogenic SO2 and other gases, as well as aerosols, with sUAVs and aerostats (e.g. tethered balloons and kites), in conjunction with data acquisitions by the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer onboard the NASA Terra Earth orbital platform. To our knowledge, this is the first such systematic in situ UAV- and aerostat-based observation programme for SO2 and particulates in a volcanic plume for correlation with orbital data. We preliminarily report good agreement between our UAV/aerostat and ASTER SO2 retrievals within a 5 km radius of the volcano summit, at altitudes of up to 12 500 ft (c. 3850 m) above sea level (asl) for concentrations within the range of 5–20 ppmv (ppm by volume). Additional work continues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.