Tin selenide (SnSe) has been the subject of great attention in the last years due to its highly efficient thermoelectricity and its possibilities as a green material, free of Pb and Te. Here, we report for the first time a thermoelectricity and transport study of individual SnSe micro- and nano-wires with diameters in the range between 130 nm and 1.15 μm. X-ray diffraction and transmission electron microscopy analyses confirm an orthorhombic SnSe structure with Pnma (62) symmetry group and 1:1 Sn:Se atomic ratio. Electrical and thermal conductivity and the Seebeck coefficient were measured in each individual nanowire using a specialized suspended microdevice in the 150–370 K temperature range, yielding a thermal conductivity of 0.55 Wm−1 K−1 at room temperature and ZT ~ 0.156 at 370 K for the 130 nm diameter nanowire. The measured properties were correlated with electronic information obtained by model simulations and with phonon scattering analysis. The results confirm these structures as promising building blocks to develop efficient temperature sensors, refrigerators and thermoelectric energy converters. The thermoelectric response of the nanowires is compared with recent reports on crystalline, polycrystalline and layered bulk structures.
Background: Silica nanoparticles (nanoSiO 2) are promising systems that can deliver biologically active compounds to tissues such as the heart in a controllable manner. However, cardiac toxicity induced by nanoSiO 2 has been recently related to abnormal calcium handling and energetic failure in cardiomyocytes. Moreover, the precise mechanisms underlying this energetic debacle remain unclear. In order to elucidate these mechanisms, this article explores the ex vivo heart function and mitochondria after exposure to nanoSiO 2 .
In this contribution, we report on the observation of high-order and bi-dimensional surface mechanisms that allows the self-assembling of an alternating array of straight and bifurcated nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.