The use of glass waste, which by its nature cannot be recycled, might be a viable alternative in the manufacture of cements and concrete that is also economical and environmentally friendly. This alternative can reduce landfill areas with this inert residue but also limit the use of raw materials employed in the manufacture of cement and concrete and, consequently, contribute to minimize the environmental impact generated by this activity. In this research, the feasibility of using a limestone-type material treated with a binder manufactured with micronized glass powder and basic reagents, in the preparation of a gravel–cement- or soil–cement-type material, was analyzed. For this purpose, the strength, compactability, structural capacity, resistance to the action of water, stiffness and durability of the material obtained were characterized. From the tests that were carried out and the results obtained, it can be concluded that the use of glass powder, with a particle size of 16 μm, is ideal for the production of a gravel–cement- or soil–cement-type material. This material could be used as an environmentally-friendly pavement, especially suitable for peri-urban roads and park roads, where it can be used without coating, or as a base layer or sub-base for road surfaces, with little cracking due to shrinkage.
The reinforcement of structural elements subjected to bending with carbon fiber reinforced polymers (CFRP) located on the underside of the element to be reinforced (known as near surface mounted or NSM) is an effective technique that provides environmentally sustainable solutions in the field of civil engineering. Introducing preloads on the reinforcing elements allows us to maximize the high performance of CFRPs, besides recovering deformations. A new technique to perform the pre-stressing of CFRP bars in NSM configuration is described in this paper. The technique introduces the preload on the rods after they have been placed in the grooves, and with a system that acts and reacts against the beam itself. We also present the results of a testing campaign conducted to determine the effectiveness of said technique. Breakage of the control beams (without reinforcement) was ductile, while breakage of reinforced beams was explosive. Pre-stressing the reinforcing elements allowed us to increase the bearing capacity of the beams 170% compared to the control beams, also resulting in an increase in the rigidity of the reinforced elements and a decreased cracking of the beam. The results however are only slightly better than those of a conventional CFRP NSM reinforcement, due to the appearance of cavities in the groove where the adhesive didn’t manage to penetrate.
The purpose of this work is to improve the modulus of elasticity of reinforced concrete pillars in the area where it is known with certainty that the concrete is elastic. To achieve this, an innovative method was devised to introduce an initial tension ( σ i ) resulting in an 11% increase in the working compression. Three concrete batches of five specimens each were prepared for this study. The first batch was used as a control without applying any reinforcement, the second was reinforced with a carbon fiber fabric (CF) layer in the usual way, and in the third batch, an initial tension was introduced to the CF fabric by a technique devised for this purpose. After measuring the modulus of elasticity of each of the specimens that made up each batch, it was observed that the modulus of elasticity obtained for the specimens in the third batch was 8% higher than the specimens in the first and second batches. The compression–deformation behaviour of the specimens observed throughout the study allows us to propose a stress–strain model with three different behaviours: linear elastic, parabolic elasto-plastic and linear elastic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.