The increase in the installation of renewable energy sources in electrical systems has changed the power distribution networks, and a new scenario regarding protection devices has arisen. Distributed generation (DG) might produce artificial delays regarding the performance of protection devices when acting as a result of short-circuits. In this study, the preliminary research results carried out to analyze the effect of renewable energy sources (photovoltaic, wind generation, etc.) on the protection devices of a power grid are described. In order to study this problem in a well-defined scenario, a quite simple distribution network (similar to the ones present in rural areas) was selected. The distribution network was divided into three protection zones so that each of them had DG. In the Institute of Electrical and Electronic Engineers (IEEE) system 13 bus test feeder, the short-circuits with different levels of penetration were performed from 1 MVA to 3 MVA (that represent 25%, 50%, and 75% of the total load in the network). In the simulations carried out, it was observed that the installation of DG in this distribution network produced significant changes in the short-circuit currents, and the inadequate performance of the protection devices and the delay in their operating times (with differences of up to 180% in relation to the case without DG). The latter, that is, the impacts of photovoltaic DG on the reactions of protection devices in a radial distribution network, is the most relevant outcome of this work. These are the first results obtained from a research collaboration framework established by staff from ETSI Civil and the IDR/UPM Institute, to analyze the effect of renewable energy sources (as DG) on the protection devices of a radial distribution network.
The Mar Menor is a Mediterranean coastal saltwater lagoon (Murcia, Spain) that represents a unique ecosystem of vital importance for the area, from both an economic and ecological point of view. During the last decades, the intense agricultural activity has caused episodes of eutrophication due to the contribution of inorganic nutrients, especially nitrates. For this reason, it is important to control the quality of the water discharged into the Mar Menor lagoon, which can be performed through the measurement of dissolved oxygen (DO). Therefore, this article aimed to predict the DO in the water discharged into this lagoon through the El Albujón watercourse, for which two theoretical models consisting of a multiple linear regression (MLR) and a back-propagation neural network (RPROP) were developed. Data of temperature, pH, nitrates, chlorides, sulphates, electrical conductivity, phosphates and DO at the mouth of this watercourse, between January 2014 and January 2021, were used. A preliminary statistical study was performed to discard the variables with the lowest influence on DO. Finally, both theoretical models were compared by means of the coefficient of determination (R2), the root mean square errors (RMSE) and the mean absolute error (MAE), concluding that the neural network made a more accurate prediction of DO.
Electric power distribution networks are generally radial in nature, with unidirectional power flows transmitted from the highest voltage levels to the consumption levels. The protection system in these distribution networks is relatively simple and consists mainly of fuses, reclosers (RC) and overcurrent relays (OCRs). The installation of distributed generation (DG) in a network causes coordination problems between these devices, because the power flows are no longer unidirectional and can flow upstream to the substation. For this reason, the work proposed here analyzes the most significant impacts that DG has on the protection devices and proposes an adjustment method for the OCRs based on linear programming (LP) techniques with the aim of improving their response time to the different faults that may occur in the main feeder of the network. The distribution system selected for the study is the IEEE 34 bus system using DIgSILENT 14.1 software for its modeling and Matlab for the adjustment of the overcurrent devices. Results indicate that better coordination between protection devices are achieved if LP is used.
The use of glass waste, which by its nature cannot be recycled, might be a viable alternative in the manufacture of cements and concrete that is also economical and environmentally friendly. This alternative can reduce landfill areas with this inert residue but also limit the use of raw materials employed in the manufacture of cement and concrete and, consequently, contribute to minimize the environmental impact generated by this activity. In this research, the feasibility of using a limestone-type material treated with a binder manufactured with micronized glass powder and basic reagents, in the preparation of a gravel–cement- or soil–cement-type material, was analyzed. For this purpose, the strength, compactability, structural capacity, resistance to the action of water, stiffness and durability of the material obtained were characterized. From the tests that were carried out and the results obtained, it can be concluded that the use of glass powder, with a particle size of 16 μm, is ideal for the production of a gravel–cement- or soil–cement-type material. This material could be used as an environmentally-friendly pavement, especially suitable for peri-urban roads and park roads, where it can be used without coating, or as a base layer or sub-base for road surfaces, with little cracking due to shrinkage.
The recent increase in the use of renewable sources in electrical systems has transformed the electrical distribution network with the subsequent implementation of the distributed generation (DG) concept. The high penetration level of photovoltaic units increases their injected fault current that may result in a lack of coordination of fuse reclosers in distribution networks. One of the main protection devices that is generally used in rural distribution networks is the fuse. A correct size selection is key for ensuring good operation and coordination with other protection devices. The DG implementation makes the selection above more difficult, as the current flow both in steady state and in case of short-circuit is subject to alterations. A new protection fuse selection method for distribution networks with implemented DG is proposed in this paper with the aim of ensuring an effective coordination between them, avoiding untimely behaviors. Different case studies have been analyzed (for diverse locations of DG in the network with various penetration levels which represent 25%, 50%, 75%, and 100% of the total installed load), using an IEEE 13-node test feeder. Besides, a new model to analyze fuse performance is proposed in this work. This model has proven to fit the manufacturer’s data well, with a maximum error of 2% within the normal trip current values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.