The COVID-19 epidemic has in fact placed the whole community in a dire predicament that has led to numerous tragedies, including an economic downturn, political unrest, and job losses. Forecasting and identifying COVID-19 infection cases is crucial for the government at all levels because the pandemic grows exponentially and results in fatalities. Hence, by giving information about the spread of the epidemic, the government can move quickly at multiple levels to establish new policies and modalities in order to minimize the trajectory of the COVID-19 pandemic's effects on both public health and the economic sectors. Forecasting models for COVID-19 infection cases in the Ural region in Russia were developed using two deep Long Short-Term Memory (LSTM) learning-based approaches namely Encoder–Decoder LSTM and Attention LSTM algorithms. The models were evaluated based on five standard performance evaluation metrics which include Mean Square Error (MSE), Mean Absolute Error (MAE), Root MSE (RMSE), Relative RMSE (RRMSE), and coefficient of determination (R2). However, the Encoder–Decoder LSTM deep learning-based forecasting model achieved the best performance results (MSE=32794.09, MAE=168.56, RMSE=181.09, RRMSE=13.46, and R2=0.87) compared to the model developed with Attention LSTM models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.