The comparison of differential operators is a problem of the theory of partial differential operators with constant coefficients. This problem up to now doesn't have a complete solution. It was formulated in the sixties by Lars Hormander in his monograph "The Analysis of Linear Partial Differential Operators". Many facts of the theory of partial differential equations can be formulated by using the concept of pre-order relation over the set of differential operators, however it is too complicated to check the comparability condition of two differential operators. In this paper we get some sufficient conditions for the comparability of two differential operators.
In this article, we derive four theorems concerning the fractional integral image for the product of the
q
-analogue of general class of polynomials with the
q
-analogue of the
I
-functions. To illustrate our main results, we use
q
-fractional integrals of Erdélyi–Kober type and generalized Weyl type fractional operators. The study concludes with a variety of results that can be obtained by using the relationship between the Erdélyi–Kober type and the Riemann–Liouville
q
-fractional integrals, as well as the relationship between the generalized Weyl type and the Weyl type
q
-fractional integrals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.