The recovery performance of immiscible and miscible CO2 huff-and-puff processes for enhanced oil recovery (EOR) in a light crude oil sample was experimentally investigated. The minimum miscibility pressure (MMP) of the original light crude oil–CO2 system was determined by means of the vanishing interfacial tension technique and found to be MMP = 9.18 MPa. Then, the solubility of the CO2 in the light crude oil and oil swelling factor due to the CO2 dissolution in the oil phase were determined at T = 30 °C and various equilibrium pressures ranging from atmospheric pressure to P eq = 12.55 MPa. Later, series of immiscible and miscible CO2 huff-and-puff tests were designed and carried out at various operating pressures (i.e., P op = 5.38–10.34 MPa). The results of the experiments showed that for secondary CO2 huff-and-puff tests performed at the operating pressures below the MMP, the ultimate oil recovery factor is quite low. It was also found that in immiscible CO2 huff-and-puff (i.e., P op < MMP) scenarios, the oil recovery factor substantially increased as the operating pressure approached near-miscible conditions. The oil recovery factor almost reached its maximum value at operating pressure near MMP (i.e., miscible condition), and further increase of operating pressure beyond MMP did not improve the recovery factor at all. The tertiary mode of miscible CO2 huff-and-puff was also examined, and it was revealed that the oil recovery is significantly improved after a waterflooding process. The oil recovery mechanisms during the CO2 huff-and-puff were mainly recognized to be interfacial tension reduction, oil swelling, and extraction of lighter components by CO2, especially during miscible CO2 injections. In addition, the average asphaltene content of produced oil and the permeability reduction of the porous medium as a result of asphaltene precipitation were measured in each test. It was found that the amount of precipitated asphaltene in the porous medium as well as permeability reduction are considerably higher in near-miscible and miscible CO2 huff-and-puff tests compared to those in immiscible cases. The compositional analysis of remaining oil from CO2 huff-and-puff tests at immiscible and miscible conditions also showed that lighter components of oil are extracted by CO2, leading the remaining oil to become heavier with greater amounts of heavy hydrocarbons (i.e., C30+). However, it was observed that the extraction of lighter components during miscible injection processes is more predominant than that during immiscible injections, resulting in the production of higher quality oil.
BackgroundThe epidemiology of facial injuries varies in different countries and geographic zones. Population concentration, lifestyle, cultural background, and socioeconomic status can affect the prevalence of maxillofacial injuries. Therefore, in this study, we evaluated the maxillofacial fractures epidemiology and treatment plans in hospitalized patients (2012-2014) which would be useful for better policy making strategies.Material and MethodsIn this retrospective study, the medical records of 386 hospitalized patients were evaluated from the department of maxillofacial surgery at Bahonar Hospital of Kerman, Iran. The type and cause of fractures and treatment plans were recorded in a checklist. For data analysis, ANOVA, t-test, Chi-square, and Fisher’s exact test were performed, using SPSS version 21.ResultsThe majority of patients were male (76.5%). Most subjects were within the age range of 20-30 years. Fractures were mostly caused by accidents, particularly motorcycle accidents (MCAs), and the most common site of involvement was the mandible (parasymphysis). There was a significant association between the type of treatment and age. In fact, the age group of 16-59 years under went open reduction internal fixation (ORIF) more than other age groups (P=0.02). Also, a significant association was observed between gender and the occurrence of fractures (P=0.01).ConclusionsConsidering the geographic and cultural indices of the evaluated population, it can be concluded that patients age and gender and trauma causes significantly affect the prevalence of maxillofacial traumas and fracture kinds and treatment plans. Key words:Epidemiology, treatment, facial injuries, face fractures, maxillofacial trauma, trauma.
Solvent bitumen extraction processes are alternatives to thermal processes with potential for improved economic and environmental performance. However, solvent interaction with bitumen commonly results in in situ asphaltene precipitation and deposition, which can hinder flow and reduce the process efficiency. Successful implementation requires one to select a solvent that improves recovery with minimal flow assurance problems. The majority of candidate industrial solvents are in the form of mixtures containing a wide range of hydrocarbon fractions, further complicating the selection process. In this study, we quantify the pore-scale asphaltene deposition using two commonly available solvent mixtures, natural gas condensate and naphtha, using a microfluidic platform. The results are also compared with those of two typical pure solvents, n-pentane and n-heptane, with all cases evaluated with both 50 and 100 μm pore-throat spacing. The condensate produced more asphaltenes and pore-space damage than the naphtha and exhibited deposition dynamics similar to that of pentane and heptane. This similarity is due to the presence of a large amount of light hydrocarbon fractions in condensate (∼85 wt % of C5s–C7s) dictating the overall deposition dynamics. Naphtha, which contains heavier fractions (∼70 wt % of C8s–C11s) and aromatic/naphthenic components, generated less asphaltenes and exhibited a slower deposition rate, resulting in less pore damage and overall better performance.
Carbon capture, storage, and utilization technologies target a reduction in net CO emissions to mitigate greenhouse gas effects. The largest such projects worldwide involve storing CO through enhanced oil recovery-a technologically and economically feasible approach that combines both storage and oil recovery. Successful implementation relies on detailed measurements of CO-oil properties at relevant reservoir conditions (P = 2.0-13.0 MPa and T = 23 and 50 °C). In this paper, we demonstrate a microfluidic method to quantify the comprehensive suite of mutual properties of a CO and crude oil mixture including solubility, diffusivity, extraction pressure, minimum miscibility pressure (MMP), and contact angle. The time-lapse oil swelling/extraction in response to CO exposure under stepwise increasing pressure was quantified via fluorescence microscopy, using the inherent fluorescence property of the oil. The CO solubilities and diffusion coefficients were determined from the swelling process with measurements in strong agreement with previous results. The CO-oil MMP was determined from the subsequent oil extraction process with measurements within 5% of previous values. In addition, the oil-CO-silicon contact angle was measured throughout the process, with contact angle increasing with pressure. In contrast with conventional methods, which require days and ∼500 mL of fluid sample, the approach here provides a comprehensive suite of measurements, 100-fold faster with less than 1 μL of sample, and an opportunity to better inform large-scale CO projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.