With the growing number of published scientific papers world-wide, the need to evaluation and quality assessment methods for research papers is increasing. Scientific fields such as scientometrics, informetrics, and bibliometrics establish quantified analysis methods and measurements for evaluating scientific papers. In this area, an important problem is to predict the future influence of a published paper. Particularly, early discrimination between influential papers and insignificant papers may find important applications. In this regard, one of the most important metrics is the number of citations to the paper, since this metric is widely utilized in the evaluation of scientific publications and moreover, it serves as the basis for many other metrics such as h-index. In this paper, we propose a novel method for predicting long-term citations of a paper based on the number of its citations in the first few years after publication. In order to train a citation count prediction model, we employed artificial neural network which is a powerful machine learning tool with recently growing applications in many domains including image and text processing. The empirical experiments show that our proposed method outperforms state-of-the-art methods with respect to the prediction accuracy in both yearly and total prediction of the number of citations.
Sludge management is a fundamental activity in accordance with wastewater treatment aims. Sludge stabilization is always considered as a significant step of wastewater sludge handling. There has been a progressive development observed in the approach to the novel solutions in this regard. In this research, based on own initially experimental results in lab-scale regarding Fered-Fenton processes in view of organic loading (volatile-suspended solids, VSS) removal efficiency, a combination of both methods towards proper improving of excess biological sludge stabilization was investigated. Firstly, VSS removal efficiency has been experimentally studied in lab-scale under different operational conditions taking into consideration pH [Fe(2+)]/[H2O2], detention time [H2O2], and current density parameters. Therefore, the correlations of the same parameters have been determined by utilizing Kohonen self-organizing feature maps (KSOFM). In addition, multi-layer perceptron (MLP) has been employed afterwards for a comprehensive evaluation of investigating parameters correlation and prediction aims. The findings indicated that the best proportion of iron to hydrogen peroxide and the optimum pH were 0.58 and 3.1, respectively. Furthermore, maximum retention time about 6 h with a hydrogen peroxide concentration of 1,568 mg/l and a current density of 650-750 mA results to the optimum VSS removal (efficiency equals to 81 %). The performance of KSOFM and MLP models is found to be magnificent, with correlation ranging (R) from 0.873 to 0.998 for the process simulation and prediction. Finally, it can be concluded that the Fered-Fenton reactor is a suitable efficient process to reduce considerably sludge organic load and mathematical modeling tools as artificial neural networks are impressive methods of process simulation and prediction accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.