With an ever-increasing number of mobile users, the development of mobile applications (apps) has become a potential market during the past decade. Billions of users download mobile apps for divergent use from Google Play Store, fulfill tasks and leave comments about their experience. Such reviews are replete with a variety of feedback that serves as a guide for the improvement of existing apps and intuition for novel mobile apps. However, application reviews are challenging and very broad to approach. Such reviews, when segregated into different classes guide the user in the selection of suitable apps. This study proposes a framework for analyzing the sentiment of reviews for apps of eight different categories like shopping, sports, casual, etc. A large dataset is scrapped comprising 251661 user reviews with the help of ‘Regular Expression’ and ‘Beautiful Soup’. The framework follows the use of different machine learning models along with the term frequency-inverse document frequency (TF-IDF) for feature extraction. Extensive experiments are performed using preprocessing steps, as well as, the stats feature of app reviews to evaluate the performance of the models. Results indicate that combining the stats feature with TF-IDF shows better performance and the support vector machine obtains the highest accuracy. Experimental results can potentially be used by other researchers to select appropriate models for the analysis of app reviews. In addition, the provided dataset is large, diverse, and balanced with eight categories and 59 app reviews and provides the opportunity to analyze reviews using state-of-the-art approaches.
To maintain the competitive edge and evaluating the needs of the quality app is in the mobile application market. The user’s feedback on these applications plays an essential role in the mobile application development industry. The rapid growth of web technology gave people an opportunity to interact and express their review, rate and share their feedback about applications. In this paper we have scrapped 506259 of user reviews and applications rate from Google Play Store from 14 different categories. The statistical information was measured in the results using different of common machine learning algorithms such as the Logistic Regression, Random Forest Classifier, and Multinomial Naïve Bayes. Different parameters including the accuracy, precision, recall, and F1 score were used to evaluate Bigram, Trigram, and N-gram, and the statistical result of these algorithms was compared. The analysis of each algorithm, one by one, is performed, and the result has been evaluated. It is concluded that logistic regression is the best algorithm for review analysis of the Google Play Store applications. The results have been checked scientifically, and it is found that the accuracy of the logistic regression algorithm for analyzing different reviews based on three classes, i.e., positive, negative, and neutral.
The fact is quite transparent that almost everybody around the world is using android apps. Half of the population of this planet is associated with messaging, social media, gaming, and browsers. This online marketplace provides free and paid access to users. On the Google Play store, users are encouraged to download countless of applications belonging to predefined categories. In this research paper, we have scrapped thousands of users reviews and app ratings. We have scrapped 148 apps’ reviews from 14 categories. We have collected 506259 reviews from Google play store and subsequently checked the semantics of reviews about some applications form users to determine whether reviews are positive, negative, or neutral. We have evaluated the results by using different machine learning algorithms like Naïve Bayes, Random Forest, and Logistic Regression algorithm. we have calculated Term Frequency (TF) and Inverse Document Frequency (IDF) with different parameters like accuracy, precision, recall, and F1 and compared the statistical result of these algorithms. We have visualized these statistical results in the form of a bar chart. In this paper, the analysis of each algorithm is performed one by one, and the results have been compared. Eventually, We've discovered that Logistic Regression is the best algorithm for a review-analysis of all Google play store. We have proved that Logistic Regression gets the speed of precision, accuracy, recall, and F1 in both after preprocessing and data collection of this dataset.
The number of software engineering jobs is expected to grow faster than all other jobs over the next decade.STEM education is an important initiative to encourage young students to develop the skills they require to succeed in these positions. The First Lego League sponsors annual tournaments in which students must build and program a robot to accomplish various tasks in order to score points. Previously, the students had not used any process or documentation when developing the programs to rnn on the robot. This competition provides an opportunity to instrnct the students in the benefits of using a formalized process that is essential in many software engineering projects commonly encountered in industry.
Android-based applications are widely used by almost everyone around the globe. Due to the availability of the Internet almost everywhere at no charge, almost half of the globe is engaged with social networking, social media surfing, messaging, browsing and plugins. In the Google Play Store, which is one of the most popular Internet application stores, users are encouraged to download thousands of applications and various types of software. In this research study, we have scraped thousands of user reviews and the ratings of different applications. We scraped 148 application reviews from 14 different categories. A total of 506,259 reviews were accumulated and assessed. Based on the semantics of reviews of the applications, the results of the reviews were classified negative, positive or neutral. In this research, different machine-learning algorithms such as logistic regression, random forest and naïve Bayes were tuned and tested. We also evaluated the outcome of term frequency (TF) and inverse document frequency (IDF), measured different parameters such as accuracy, precision, recall and F1 score (F1) and present the results in the form of a bar graph. In conclusion, we compared the outcome of each algorithm and found that logistic regression is one of the best algorithms for the review-analysis of the Google Play Store from an accuracy perspective. Furthermore, we were able to prove and demonstrate that logistic regression is better in terms of speed, rate of accuracy, recall and F1 perspective. This conclusion was achieved after preprocessing a number of data values from these data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.