A cell-free massive multiple-input multiple-output (MIMO) uplink is considered, where quantize-and-forward (QF) refers to the case where both the channel estimates and the received signals are quantized at the access points (APs) and forwarded to a central processing unit (CPU) whereas in combinequantize-and-forward (CQF), the APs send the quantized version of the combined signal to the CPU. To solve the non-convex sum rate maximization problem, a heuristic sub-optimal scheme is exploited to convert the power allocation problem into a standard geometric programme (GP). We exploit the knowledge of the channel statistics to design the power elements. Employing largescale-fading (LSF) with a deep convolutional neural network (DCNN) enables us to determine a mapping from the LSF coefficients and the optimal power through solving the sum rate maximization problem using the quantized channel. Four possible power control schemes are studied, which we refer to as i) small-scale fading (SSF)-based QF; ii) LSF-based CQF; iii) LSF use-and-then-forget (UatF)-based QF; and iv) LSF deep learning (DL)-based QF, according to where channel estimation is performed and exploited and how the optimization problem is solved. Numerical results show that for the same fronthaul rate, the throughput significantly increases thanks to the mapping obtained using DCNN.
To counteract spoofing attacks, the majority of recent approaches to face spoofing attack detection formulate the problem as a binary classification task in which real data and attack-accesses are both used to train spoofing detectors. Although the classical training framework has been demonstrated to deliver satisfactory results, its robustness to unseen attacks is debatable. Inspired by the recent success of anomaly detection models in face spoofing detection, we propose an ensemble of one-class classifiers fused by a Stacking ensemble method to reduce the generalisation error in the more realistic unseen attack scenario. To be consistent with this scenario, anomalous samples are considered neither for training the component anomaly classifiers nor for the design of the Stacking ensemble. To achieve better face-anti spoofing results, we adopt client-specific information to build both constituent classifiers as well as the Stacking combiner. Besides, we propose a novel 2-stage Genetic Algorithm to further improve the generalisation performance of Stacking ensemble. We evaluate the effectiveness of the proposed systems on publicly available face anti-spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results following the unseen attack evaluation protocol confirm the merits of the proposed model.
Existing facial age estimation studies have mostly focused on intra-database protocols that assume training and test images are captured under similar conditions. This is rarely valid in practical applications, where we typically encounter training and test sets with different characteristics. In this paper, we deal with such situations, namely subjective-exclusive cross-database age estimation. We formulate the age estimation problem as the distribution learning framework, where the age labels are encoded as a probability distribution. To improve the cross-database age estimation performance, we propose a new loss function which provides a more robust measure of the difference between ground-truth and predicted distributions. The desirable properties of the proposed loss function are theoretically analysed and compared with the state-of-the-art approaches. In addition, we compile a new balanced large-scale age estimation database. Last, we introduce a novel evaluation protocol, called subject-exclusive cross-database age estimation protocol, which provides meaningful information of a method in terms of the generalisation capability. The experimental results demonstrate that the proposed approach outperforms the state-of-the-art age estimation methods under both intra-database and subject-exclusive cross-database evaluation protocols. In addition, in this paper, we provide a comparative sensitivity analysis of various algorithms to identify trends and issues inherent to their performance. This analysis introduces some open problems to the community which might be considered when designing a robust age estimation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.