In this paper we introduce a new application that exploits the emerging imaging modality of full field optical coherence tomography (FFOCT) as a means of optical biopsy. The objective is to build a computer-aided diagnosis (CAD) tool that can speed up the detection of tumoral areas in skin excisions resulting from Mohs surgery. Since there is little prior knowledge about the appearance of cancer cell morphology in this type of imagery, deep learning techniques are applied. Using convolutional neural networks (CNN), we train a feature extractor able to find representative characteristics for FFOCT data and a classifier that learns a generalized distribution of the data. With a dataset of 40 high-resolution images, we obtained a classification accuracy of 95.93%.
The adoption of emerging imaging technologies in the medical community is often hampered if they provide a new unfamiliar contrast that requires experience to be interpreted. Here, in order to facilitate such integration, we developed two complementary machine learning approaches, respectively based on feature engineering and on convolutional neural networks (CNN), to perform automatic diagnosis of breast biopsies using dynamic full field optical coherence tomography (D-FF-OCT) microscopy. This new technique provides fast, high resolution images of biopsies with a contrast similar to H&E histology, but without any tissue preparation and alteration. We conducted a pilot study on 51 breast biopsies, and more than 1,000 individual images, and performed standard histology to obtain each biopsy diagnosis. Using our automatic diagnosis algorithms, we obtained an accuracy above 88% at the image level, and above 96% at the biopsy level. Finally, we proposed different strategies to narrow down the spatial scale of the automatic segmentation in order to be able to draw the tumor margins by drawing attention maps with the CNN approach, or by performing high resolution precise annotation of the datasets. Altogether, these results demonstrate the high potential of D-FF-OCT coupled to machine learning to provide a rapid, automatic, and accurate histopathology diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.