Signal models are a cornerstone of contemporary signal and image-processing methodology. In this chapter, a particular signal modelling method, called synthesis sparse representation, is studied which has been proven to be effective for many signals, such as natural images, and successfully used in a wide range of applications. In this kind of signal modelling, the signal is represented with respect to dictionary. The dictionary choice plays an important role on the success of the entire model. One main discipline of dictionary designing is based on a machine learning methodology which provides a simple and expressive structure for designing adaptable and efficient dictionaries. This chapter focuses on direct application of the sparse representation, i.e. image compression. Two image codec based on adaptive sparse representation over a trained dictionary are introduced. Experimental results show that the presented methods outperform the existing image coding standards, such as JPEG and JPEG2000.