Diamond-like carbon (DLC) films have received much attention recently owing to their properties, which are similar to diamond: hardness, thermal conductivity, corrosion resistance against chemicals, abrasion resistance, good biocompatibility, and uniform flat surface. Furthermore, DLC films can be deposited easily on many substrates for wide area coat at room temperature. DLC films were developed for applications as biomedical materials in blood contacting-devices (e.g., rotary blood pump) and showed good biocompatibility for these applications. In this study, we investigated the surface roughness by Atomic Force Microscopy (AFM) and Hi-vision camera, SEM for surface imaging. The DLC films were produced by radio frequency glow discharge plasma decomposed of hydrocarbon gas at room temperature and low pressure (53 Pa) on several kinds of polycarbonate substrates. For the evaluation of the relation between deposition rate and platelet adhesion that we investigated in a previous study, DLC films were deposited at the same methane pressure for several deposition times, and film thickness was investigated. In addition, the deposition rate of DLC films on polymeric substrates is similar to the deposition rate of those deposited on Si substrates. There were no significant differences in substrates' surface roughness that were coated by DLC films in different deposition rates (16-40 nm). The surface energy and the contact angle of the DLC films were investigated. The chemical bond of DLC films also was evaluated. The evaluation of surface properties by many methods and measurements and the relationship between the platelet adhesion and film thickness is discussed. Finally, the presented DLC films appear to be promising candidates for biomedical applications and merit investigation.
In this study, correlation of cell proliferation with surface properties of the polymer-like carbon (PLC) films of different thicknesses prepared by radio-frequency plasma CVD are investigated. Four PLC samples were prepared via radio frequency plasma chemical vapor deposition on Si substrates. Each PLC film was analyzed using spectroscopic ellipsometry to determine its thickness, refractive index (n), and extinction coefficient (k); the thickness ranged from 29.0 to 356.5 nm. Based on their n-k plots, all the samples were classified as PLC-type films. The biological response of the PLC films was evaluated in vitro using a cell culture. The samples with relatively thick PLC films (>300 nm) exhibited stronger cell proliferation properties than those with thinner films. Moreover, the results of the surface analysis showed no significant differences in the surface composition of those PLC samples, as analyzed using X-ray photoelectron spectroscopy, but that as the PLC films became thicker, their surfaces became rougher on the nanoscale and their wettability improved. Overall, this study showed that careful control of the film growth of PLC films, which affects their surface properties, is essential for their use in bio-interface applications.
We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.
There is currently an increasing interest in the use of DLC (diamond like carbon) films in biomedical applications. These investigations making use of DLC in the biomedical area indicate its attractive properties. In this study, we succeeded in depositing DLC on polymer substrates and found the best conditions and method for this application. We evaluated the blood compatibility of polycarbonate substrates coated by DLC (PC-DLC) under different conditions by using epifluorescent video microscopy (EVM) combined with a parallel plate flow chamber. Segmented polyurethane (SPU), which has been used to fabricate medical devices including an artificial heart, and proven to have acceptable blood compatibility, was compared with polycarbonate substrates coated with DLC film. The EVM system measured platelet adhesion on the surface of the DLC, by using whole human blood containing Mepacrine labeled platelets perfuse at a wall shear rate of 100 s(-1) at 1 min intervals for a period of 20 min. PC-DLC demonstrated that Tecoflex showed higher complement activation than PC-DLC. There were significant differences between the PC-DLC substrates. On the basis of these results, it is recommended for use as a coating material in implantable blood contacting devices such as artificial hearts, pacemakers, and other devices. This DLC seems to be a promising candidate for biomaterials applications and merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.