The combined zero degree structure (KONUS) is a quasiperiodic structure. It was developed for the low-energy part of multigap drift tube linacs with H-type cavities. Their rf efficiency depends very much on a low electrical capacity of the drift tube structure, while in E-type structures like the Alvarez-DTL this is a minor effect. Therefore, instead of having quadrupole singlets integrated in voluminous drift tubes, KONUS allows one to develop a separated function drift tube linac (DTL) with a large voltage gain between two lenses. Very low beam injection energies can be realized, as the drift tube lengths can range down to around 10 mm. One KONUS period consists of a triplet lens, a rebuncher with a few gaps at a synchronous phase around −35°, and the main multigap acceleration designed for a hypothetical zero degree synchronous particle. The longitudinal beam dynamics along this main acceleration section and the layout of the quadrupole triplet channel are explained in detail. Two examples for pulsed high current proton and heavy ion acceleration are included.
Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4 Â 10 19 W=cm 2 , a total yield of 1:5 Â 10 13 protons was produced. For the reference energy of 10 MeV, the yield within AE0:5 MeV was exceeding 10 10 protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.