Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing 30 mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile
The Gulf of Aqaba is the only seaport in Jordan which currently has intense activities such as industrial development, phosphate ore exportation, oil importation, shipping, commercial and sport fishing. Most of these activities, especially the phosphate ore exportation, could cause serious radiological effects to the marine environment. Thus, it is essential to investigate the level of the radioactivity concentrations to establish a baseline database, which is not available yet in the Gulf of Aqaba. Radioactivity concentrations of gamma-emitting radionuclides in core and beach sediments of the Gulf of Aqaba were investigated. Core sediments were collected from five representative locations for three different water column depths (5, 15 and 35 m). The results showed that the activity concentrations of 238U, 235U and 226Ra for both seafloor and beach sediments from the phosphate loading berth (PLB) location to be higher than those from other investigated locations and more than twice as high as the worldwide average; the 238U activity concentration was found to vary from 57 to 677 Bq kg(-1). The results also showed that there is little variation of radioactivity concentrations within the core length of 15 cm. The calculated mean values of the radium equivalent activity Ra(eq), the external hazard index, H(ex), the absorbed dose rate and the annual effective dose for the beach sediment in PLB location were 626 Bq kg(-1), 1.69, 263 nGy h(-1) and 614 µSv y(-1), respectively. These values are much higher than the recommended limits that impose potential health risks to the workers in this location. As for other studied locations, the corresponding values were far below the maximum recommended limit and lies within the worldwide range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.