Oxidized lipoproteins have been identified in atherosclerotic plaques and in early lesions in humans as well as in animals. There is accumulating evidence that such oxidized lipoproteins have an important role in atherosclerosis. Treatment of endothelial cells with altered lipoproteins stimulates monocyte binding as well as the production of chemotactic factors for monocytes. Both these findings could be relevant to the accumulation of monocytes-macrophages in the arterial wall during the early stages of lesion development. We now report that treatment of endothelial cells (EC) with modified low-density lipoproteins obtained by mild iron oxidation or by prolonged storage, results in a rapid and large induction of the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage CSF (M-CSF) and granulocyte CSF (G-CSF). These growth factors affect the differentiation, survival, proliferation, migration and metabolism of macrophages/granulocytes, and G-CSF and GM-CSF also affect the migration and proliferation of EC. Because EC and macrophages are important in the development of atherosclerosis, the expression of the CSFs by these cells could contribute to the disease.
A high fat, high cholesterol "atherogenic" diet induced considerably greater hepatic levels of conjugated dienes and expression of several inflammatory and oxidative stress responsive genes (JE, the mouse homologue of monocyte chemotactic protein-i, colony-stimulating factors, heme oxygenase, and members of the serum amyloid A family) in fatty streak susceptible C57BL/6 mice compared to fatty streak resistant C3H/ HeJ mice. Since serum amyloid A proteins bind exclusively to HDL and influence the properties of HDL, serum amyloid A expression may contribute to the decrease in HDL levels seen in the susceptible strains. Induction of a similar set of genes was observed upon injection of minimally oxidized low density lipoprotein. The transcription factor NF-KB is known to be activated by oxidative stress and is involved in the transcriptional regulation of several of these genes. On the atherogenic diet the susceptible C57BL/6 mice exhibited significant NF-KB-like activation whereas the resistant C3H/HeJ mice exhibited little or no activation. These results are consistent with the hypothesis that the atherogenic diet resulted in the accumulation of oxidized lipids in certain tissues (e.g., liver and arteries) and the resulting inflammatory response to this oxidative stress was genetically determined. (J. Clin. Invest. 1993. 91:2572-2579
Streptococcus pneumoniae (S. pneumoniae) causes high early mortality in pneumococcal pneumonia, which is characterized by acute lung injury (ALI). The molecular mechanisms underlying ALI and the high early mortality remain unknown. Despite recent studies that identify deubiquitinating enzyme cylindromatosis (CYLD) as a key regulator for T cell development, tumor cell proliferation, and NF-kappaB transcription factor signaling, its role in regulating bacteria-induced lethality, however, is unknown. Here, we showed that CYLD deficiency protected mice from S. pneumoniae pneumolysin (PLY)-induced ALI and lethality. CYLD was highly induced by PLY, and it inhibited MKK3-p38 kinase-dependent expression of plasminogen activator inhibitor-1 (PAI-1) in lung, thereby potentiating ALI and mortality. Thus, CYLD is detrimental for host survival, thereby indicating a mechanism underlying the high early mortality of pneumococcal pneumonia.
The recognition of invading microbes followed by the induction of effective innate immune response is crucial for host survival. Human surface epithelial cells are situated at host-environment boundaries and thus act as the first line of host defense against invading microbes. They recognize the microbial ligands via Toll-like receptors (TLRs) expressed on the surface of epithelial cells. TLR2 has gained importance as a major receptor for a variety of microbial ligands. In contrast to its high expression in lymphoid tissues, TLR2 is expressed at low level in epithelial cells. Thus, it remains unclear whether the low amount of TLR2 expressed in epithelial cells is sufficient for mediating bacteria-induced host defense and immune response and whether TLR2 expression can be upregulated by bacteria during infection. Here, we show that TLR2, although expressed at very low level in unstimulated human epithelial cells, is greatly up-regulated by nontypeable Hemophilus influenzae (NTHi), an important human bacterial pathogen causing otitis media and chronic obstructive pulmonary diseases. Activation of an IKK-IB␣-dependent NF-B pathway is required for TLR2 induction, whereas inhibition of the MKK3/6-p38␣/ pathway leads to enhancement of NTHi-induced TLR2 up-regulation. Surprisingly, glucocorticoids, well known potent anti-inflammatory agents, synergistically enhance NTHi-induced TLR2 up-regulation likely via a negative cross-talk with the p38 MAP kinase pathway. These studies may bring new insights into the role of bacteria and glucocorticoids in regulating host defense and immune response and lead to novel therapeutic strategies for modulating innate immune and inflammatory responses for otitis media and chronic obstructive pulmonary diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.