Feature selection is used in machine learning as well as in statistical pattern recognition. This is important in many applications, such as classification. There are so many extracted features in these applications which are either useless or do not have much information. If not removing these features, make raises the computational burden for the main application. In different methods of feature selection, a subset is selected as the answer, which can optimize the value of an evaluation function. In this study, a new algorithm for classification of Dermoscopy images into two types of malignant and benign are presented. To develop the general skin cancer detection system, at first a pre-processing step is applied to enhance image quality. Then the lesion area is removed from the healthy areas using the Otsu threshold method. Nine shape feature and nine color features are extracted from the segmented image using different optimization schema. At the end of the operation, classification was done by SVM, KNN and Decision Tree methods. The results show that combination of buzzard optimization algorithm for feature extraction and SVM classifier accuracy is 94.3%. This result shows the high potential of buzzard optimization algorithm for feature extraction.
Post-operative haemorrhage is a recognized complication in dental practice. This may be more prevalent in patients taking antithrombotic medications. It is important that the dentist understands the mechanism of action of these drugs and how they may affect management of dental patients. Clinical Relevance: Dental professionals must be aware of those medications affecting haemostasis and how they may impact on management. The emergence of different therapeutic regimens has increased the number of such drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.