In recent months, coronavirus disease 2019 (COVID-19) has infected millions of people worldwide. In addition to the clinical tests like reverse transcriptionpolymerase chain reaction (RT-PCR), medical imaging techniques such as computed tomography (CT) can be used as a rapid technique to detect and evaluate patients infected by COVID-19. Conventionally, CT-based COVID-19 classification is done by a radiology expert. In this paper, we present a deep learning-based Convolutional Neural Network (CNN) model we developed for the classification of COVID-19 positive patients from healthy subjects using chest CT. We used 10979 chest CT images of 131 patients with COVID-19 and 150 healthy subjects for training, validating, and testing of the proposed model. Evaluation of the results showed the precision of 92%, sensitivity of 90%, specificity of 91%, F1-Score of 0.91, and accuracy of 90%. We have used the regions of infection segmented by a radiologist to increase the generalization and reliability of the results. The plotted heatmaps show that the developed model has focused only on the infected regions of the lungs by COVID-19 to make decisions.
Diagnosis and staging of COVID-19 are crucial for optimal management of the disease. To this end, novel image analysis methods need to be developed to assist radiologists with the detection and quantification of the COVID-19-related lung infections. In this work, we develop and evaluate four Artificial intelligence (AI) based lesion segmentation and quantification methods from chest CT, using U-Net, Attention U-Net, R2U-Net, and Attention R2U-Net models. These models are trained and evaluated using a dataset consisting of 8739 CT images of the lungs from 147 healthy subjects and 150 patients infected by COVID-19. The results show that the Attention R2U-Net model is superior to the others with a Dice value of 0.79. The lesion volumes estimated by the Attention R2U-Net model are highly correlated with those of the manual segmentations by an expert, with a correlation coefficient of 0.96.
Background: Chest computed tomography (CT) scan is one of the most common tools used for the diagnosis of patients with coronavirus disease 2019 (COVID-19). While segmentation of COVID-19 lung lesions by radiologists can be time-consuming, the application of advanced deep learning techniques for automated segmentation can be a promising step toward the management of this infection and similar diseases in the future. Objectives: This study aimed to evaluate the performance and generalizability of deep learning-based models for the automated segmentation of COVID-19 lung lesions. Patients and Methods: Four datasets (2 private and 2 public) were used in this study. The first and second private datasets included 297 (147 healthy and 150 COVID-19 cases) and 82 COVID-19 subjects. The public datasets included the COVID19-P20 (20 COVID-19 cases from 2 centers) and the MosMedData datasets (50 COVID-19 patients from a single center). Model comparisons were made based on the Dice similarity coefficient (DSC), receiver operating characteristic (ROC) curve, and area under the curve (AUC). The predicted CT severity scores by the model were compared with those of radiologists by measuring the Pearson’s correlation coefficients (PCC). Also, DSC was used to compare the inter-rater agreement of the model and expert against that of 2 experts on an unseen dataset. Finally, the generalizability of the model was evaluated, and a simple calibration strategy was proposed. Results: The VGG16-UNet model showed the best performance across both private datasets, with a DSC of 84.23% ± 1.73% on the first private dataset and 56.61% ± 1.48% on the second private dataset. Similar results were obtained on public datasets, with a DSC of 60.10% ± 2.34% on the COVID19-P20 dataset and 66.28% ± 2.80% on a combined dataset of COVID19-P20 and MosMedData. The predicted CT severity scores of the model were compared against those of radiologists and were found to be 0.89 and 0.85 on the first private dataset and 0.77 and 0.74 on the second private dataset for the right and left lungs, respectively. Moreover, the model trained on the first private dataset was examined on the second private dataset and compared against the radiologist, which revealed a performance gap of 5.74% based on DSCs. A calibration strategy was employed to reduce this gap to 0.53%. Conclusion: The results demonstrated the potential of the proposed model in localizing COVID-19 lesions on CT scans across multiple datasets; its accuracy competed with the radiologists and could assist them in diagnostic and treatment procedures. The effect of model calibration on the performance of an unseen dataset was also reported, increasing the DSC by more than 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.