Diagnosis and staging of COVID-19 are crucial for optimal management of the disease. To this end, novel image analysis methods need to be developed to assist radiologists with the detection and quantification of the COVID-19-related lung infections. In this work, we develop and evaluate four Artificial intelligence (AI) based lesion segmentation and quantification methods from chest CT, using U-Net, Attention U-Net, R2U-Net, and Attention R2U-Net models. These models are trained and evaluated using a dataset consisting of 8739 CT images of the lungs from 147 healthy subjects and 150 patients infected by COVID-19. The results show that the Attention R2U-Net model is superior to the others with a Dice value of 0.79. The lesion volumes estimated by the Attention R2U-Net model are highly correlated with those of the manual segmentations by an expert, with a correlation coefficient of 0.96.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.